Targeting angiogenesis for cancer (gene) therapy

被引:0
|
作者
Gardlik, R. [1 ]
Celec, P. [1 ]
Bernadic, M. [1 ]
机构
[1] Comenius Univ, Inst Pathophysiol, Fac Med, SK-81108 Bratislava, Slovakia
关键词
gene therapy; cancer treatment; angiogenesis; biomedicine; experimental animals; proangiogentic factors; INHIBITS TUMOR ANGIOGENESIS; INTRATUMORAL INJECTION; MONOCLONAL-ANTIBODY; GROWTH; VEGF; BEVACIZUMAB; COMBINATION; MELANOMA; SUPPRESSION; ENDOSTATIN;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Suppression of development of new blood vessels in solid tumors provides a clear therapeutic benefit both in experimental animals and human patients. Molecules targeting multiple pathways with VEGF pathway being one of the best described are currently under consideration to reach use in clinical settings. Even though some success has been observed using traditional protein-based inhibitors, alternative strategies and new approaches to inhibit excessive tumor angiogenesis are being developed and tested. Gene therapy represents a powerful tool for therapeutic intervention to angiogenesis. Delivery of genes encoding endogenous angiogenesis inhibitors and decoy receptors for proangiogenic factors may bear an advantage over classic non-gene therapy in terms of specific targeting, cost-effectiveness and safety. Modern approaches focused on gene targeting such as RNA interference and microRNA will show the future direction in the field of angiogenesis inhibition for cancer treatment (Ref. 68). Full Text in free PDF www.bmj.sk.
引用
收藏
页码:428 / 434
页数:7
相关论文
共 50 条
  • [21] A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin
    F Xiao
    Y Wei
    L Yang
    X Zhao
    L Tian
    Z Ding
    S Yuan
    Y Lou
    F Liu
    Y Wen
    J Li
    H Deng
    B Kang
    Y Mao
    S Lei
    Q He
    J Su
    Y Lu
    T Niu
    J Hou
    M-J Huang
    Gene Therapy, 2002, 9 : 1207 - 1213
  • [22] A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin
    Xiao, F
    Wei, Y
    Yang, L
    Zhao, X
    Tian, L
    Ding, Z
    Yuan, S
    Lou, Y
    Liu, F
    Wen, Y
    Li, J
    Deng, H
    Kang, B
    Mao, Y
    Lei, S
    He, Q
    Su, J
    Lu, Y
    Niu, T
    Hou, J
    Huang, MJ
    GENE THERAPY, 2002, 9 (18) : 1207 - 1213
  • [23] Targeting transcription factors for cancer gene therapy
    Libermann, TA
    Zerbini, LF
    CURRENT GENE THERAPY, 2006, 6 (01) : 17 - 33
  • [24] Targeting suicide genes for cancer gene therapy
    Lemoine, NR
    Tenev, T
    McNeish, L
    Stoll, V
    Marani, M
    Vassaux, G
    CANCER GENE THERAPY, 2001, 8 : S17 - S17
  • [25] Transcriptional targeting for ovarian cancer gene therapy
    Casado, E
    Nettelbeck, DM
    Gomez-Navarro, J
    Hemminki, A
    Baron, MG
    Siegal, GP
    Barnes, MN
    Alvarez, RD
    Curiel, DT
    GYNECOLOGIC ONCOLOGY, 2001, 82 (02) : 229 - 237
  • [26] Transductional targeting of adenoviral cancer gene therapy
    Everts, M
    Curiel, DT
    CURRENT GENE THERAPY, 2004, 4 (03) : 337 - 346
  • [27] Targeting Cancer Gene Therapy with Magnetic Nanoparticles
    Li, Charles
    Li, Linda
    Keates, Andrew C.
    ONCOTARGET, 2012, 3 (04) : 365 - 370
  • [28] Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy
    Yadav, Poonam
    Dua, Chhavi
    Bajaj, Avinash
    CHEMICAL RECORD, 2022, 22 (12):
  • [29] Radiolabeled biomolecules for early cancer detection and therapy via angiogenesis targeting
    Bouziotis, P.
    Psimadas, D.
    Fani, M.
    Gourni, E.
    Loudos, G.
    Xanthopoulos, S.
    Archimandritis, S. C.
    Varvarigou, A. D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 569 (02): : 492 - 496
  • [30] Targeting complement-dependent angiogenesis in the premetastatic niche for cancer therapy
    Ghouse, Shanawaz Mohammed
    Vadrevu, Surya Kumari
    Patel, Bhaumik
    Kang, Hanvin
    Reese, Britney
    Karbowniczek, Magdalena
    Markiewski, Maciej
    MOLECULAR IMMUNOLOGY, 2018, 102 : 190 - 190