Some properties of generalized Fibonacci sequence spaces

被引:72
|
作者
Kara, Emrah Evren [1 ]
Ilkhan, Merve [1 ]
机构
[1] Duzce Univ, Dept Math, Duzce, Turkey
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 11期
关键词
sequence spaces; matrix transformations; Schauder basis; alpha-; beta-; gamma-duals; MATRIX TRANSFORMATIONS;
D O I
10.1080/03081087.2016.1145626
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define new spaces as a generalization of the Fibonacci difference sequence spaces. Also, we establish some inclusion theorems related to these spaces and find the alpha-, beta-, gamma-duals. Lastly, we characterize some matrix classes on these spaces.
引用
收藏
页码:2208 / 2223
页数:16
相关论文
共 50 条
  • [31] RUNS AND THE GENERALIZED FIBONACCI SEQUENCE
    TOMKINS, A
    PITT, D
    MATHEMATICAL GAZETTE, 1985, 69 (448): : 109 - 113
  • [32] On some properties of k-generalized Fibonacci numbers
    Ozdemir, Halim
    Karakaya, Sinan
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (02) : 193 - 202
  • [33] TOPOLOGICAL AND GEOMETRIC PROPERTIES OF SOME NEW SEQUENCE SPACES OF GENERALIZED DIFFERENCE OPERATOR
    Braha, Naim l.
    Et, Mikail
    Karakas, Murat
    Mursaleen, Mohammad
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
  • [34] On some geometric properties of sequence spaces of generalized arithmetic divisor sum function
    Mursaleen, Mohammad
    Herawati, Elvina
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [35] Some geometric properties of generalized modular sequence spaces defined by Zweier operator
    Sudsukh, Chanan
    Mongkolkeha, Chirasak
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2289 - 2297
  • [36] On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawe
    Hudzik, Henryk
    Szyrnaszkiewicz, Lucjan
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) : 181 - 198
  • [37] On some geometrical and topological properties of generalized Calderon-Lozanovskii sequence spaces
    Foralewski, P
    Hudzik, H
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (03): : 531 - 542
  • [38] COMPACTNESS OF MATRIX OPERATORS ON SOME SEQUENCE SPACES DERIVED BY FIBONACCI NUMBERS
    Kara, E. E.
    Basarir, M.
    Mursaleen, M.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (02): : 217 - 230
  • [39] SOME NEW PARANORMED DIFFERENCE SEQUENCE SPACES DERIVED BY FIBONACCI NUMBERS
    Kara, Emrah Evren
    Demiriz, Serkan
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 907 - 923
  • [40] Some extensions of properties of the sequence of reciprocal Fibonacci polynomials
    Jaroszewski, I
    Kwasniewski, AK
    FIBONACCI QUARTERLY, 1998, 36 (04): : 348 - 353