Real-Time Hand Gesture Recognition Based on Artificial Feed-Forward Neural Networks and EMG

被引:0
|
作者
Benalcazar, Marco E. [1 ]
Zea, Jonathan A. [1 ]
Jaramillo, Andres G. [1 ]
Anchundia, Carlos E. [1 ]
Zambrano, Patricio [1 ]
Segura, Marco [1 ]
机构
[1] Escuela Politec Nacl, Dept Informat & Ciencias Computac, Quito, Ecuador
来源
2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2018年
关键词
hand gesture recognition; real-time; feed-forward neural networks; electromyography; feature extraction; time series; SURFACE EMG;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a real-time hand gesture recognition model. This model is based on both a shallow feedforward neural network with 3 layers and an electromyography (EMG) of the forearm. The structure of the proposed model is composed of 5 modules: data acquisition using the commercial device Myo armband and a sliding window approach, preprocessing, automatic feature extraction, classification, and postprocessing. The proposed model has an accuracy of 90.1% at recognizing 5 categories of gestures (fist, wave-in, wave-out, open, and pinch), and an average time response of 11 ms in a personal computer. The main contributions of this work include (1) a hand gesture recognition model that responds quickly and with relative good accuracy, (2) an automatic method for feature extraction from time series of varying length, and (3) the code and the dataset used for this work, which are made publicly available.
引用
收藏
页码:1492 / 1496
页数:5
相关论文
共 50 条
  • [21] A Real-time Hand Gesture Recognition Method
    Zhao, Yafei
    Wang, Weidong
    Wang, Yuehai
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 2475 - 2478
  • [22] Real-Time Dynamic Hand Gesture Recognition
    Lai, Hsiang-Yueh.
    Lai, Han-Jheng.
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 658 - 661
  • [23] Real-time hand gesture recognition in FPGA
    Raheja, Jagdish Lal
    Subramaniyam, Shriram
    Chaudhary, Ankit
    OPTIK, 2016, 127 (20): : 9719 - 9726
  • [24] A real-time hand gesture recognition method
    Fang, Yikai
    Wang, Kongqiao
    Cheng, Jian
    Lu, Hanqing
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 995 - +
  • [25] Fractional activation functions in feed-forward artificial neural networks
    Ivanov, Alexander
    2018 20TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL APPARATUS AND TECHNOLOGIES (SIELA), 2018,
  • [26] Multilayer feed-forward artificial neural networks for class modeling
    Marini, Federico
    Magri, Antonio L.
    Bucci, Remo
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 88 (01) : 118 - 124
  • [27] Multilayer feed-forward artificial neural networks for class modeling
    Marini, Federico
    Magrì, Antonio L.
    Bucci, Remo
    Chemometrics and Intelligent Laboratory Systems, 2007, 87 (01) : 43 - 49
  • [28] Real-time Gesture Recognition Based on Improved Artificial Neural Network and sEMG Signals
    Zhang, Wenzhe
    Shuai, Liguo
    Kan, Haoxuan
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 981 - 986
  • [29] Real-time hand gesture recognition for robot hand interface
    Lv, Xiaomeng
    Xu, Yulin
    Wang, Ming
    Communications in Computer and Information Science, 2014, 461 : 209 - 214
  • [30] Real-Time Hand Gesture Recognition for Robot Hand Interface
    Lv, Xiaomeng
    Xu, Yulin
    Wang, Ming
    LIFE SYSTEM MODELING AND SIMULATION, 2014, 461 : 209 - 214