Vortex dynamics and structures of methane/air jet diffusion flames with air coflow

被引:18
|
作者
Wang, Q. [1 ]
Darabkhani, H. Gohari [2 ]
Chen, L. [1 ]
Zhang, Y. [1 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Cranfield Univ, Sch Appl Sci, Cranfield M43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
Coflow; Schlieren; PIV; Vortex dynamics; LIFTED FLAMES;
D O I
10.1016/j.expthermflusci.2011.10.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, high speed direct/schlieren imaging system together with Particle Image Velocimetry (PIV) system is applied to investigate the vortex dynamics and structures of methane-air coflow diffusion flames. The schlieren and PIV images show that the dynamics of the vortices outside the visible flame are strongly affected by the coflow air velocity. The coflow air is observed to push the initiation point of toroidal vortices from the nozzle exit to downstream. When the vortices are pushed beyond the visible flame height, the typical flame flickering behavior disappears and the flame becomes stable. The critical air flow rate at which the flame stops oscillating is observed to increase with the fuel flow rate. The visible flame shows no obvious change when the coflow flow rate exceeds a critical value. However, the flow pattern and vortices outside the visible flame keep changing at different air flow rates. The velocity vectors and vorticity contours at different air flow rates are presented and analyzed. The shedding frequency of the toroidal vortex is in good agreement with the flame flickering frequency obtained from a photomultiplier. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [41] A computational study of soot formation and flame structure of coflow laminar methane/air diffusion flames under microgravity and normal gravity
    Veshkini, Armin
    Dworkin, Seth B.
    COMBUSTION THEORY AND MODELLING, 2017, 21 (05) : 864 - 878
  • [42] Measurements and modeling of PAH soot precursors in coflow ethylene/air laminar diffusion flames
    Jerez, A.
    Cruz Villanueva, J. J.
    Figueira da Silva, L. F.
    Demarco, R.
    Fuentes, A.
    FUEL, 2019, 236 : 452 - 460
  • [43] Soot formation in hydrocarbon air laminar jet diffusion flames
    Sunderland, PB
    Faeth, GM
    COMBUSTION AND FLAME, 1996, 105 (1-2) : 132 - 146
  • [44] Numerical simulation of premixed methane/air and synthesis gas/air flames for turbulence swirling jet
    Lobasov, A. S.
    Dekterev, Ar A.
    Minakov, A., V
    XXXV SIBERIAN THERMOPHYSICAL SEMINAR, 2019, 2019, 1382
  • [45] Effects of diluents on NO x formation in coflow CH4/air diffusion flames
    Dong, Huan
    Zhang, Yue
    Gu, Zhongzhu
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 31 (06) : 1002 - 1007
  • [46] Universal relationships in sooting methane-air diffusion flames
    Kaplan, CR
    Patnaik, G
    Kailasanath, K
    COMBUSTION SCIENCE AND TECHNOLOGY, 1998, 131 (1-6) : 39 - 65
  • [47] Imaging of Flame Behavior in Flickering Methane/Air Diffusion Flames
    Yilmaz, N.
    Donaldson, A. B.
    Gill, W.
    Lucero, R. E.
    JOURNAL OF VISUALIZATION, 2009, 12 (01) : 47 - 55
  • [48] Numerical simulation of methane-air turbulent diffusion flames
    Sekhar, PVRC
    Sundararajan, T
    Shet, USP
    IECEC-97 - PROCEEDINGS OF THE THIRTY-SECOND INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4: VOL.1: AEROSPACE POWER SYSTEMS AND TECHNOL; VOL 2: ELECTROCHEMICAL TECHNOL, CONVERSION TECHNOL, THERMAL MANAGEMENT; VOLS 3: ENERGY SYSTEMS, RENEWABLE ENERGY RESOURCES, ENVIRONMENTAL IMPACT, POLICY IMPACTS ON ENERGY; VOL 4: POST DEADLINE PAPERS, INDEX, 1997, : 2351A - +
  • [49] Imaging of flame behavior in flickering methane/air diffusion flames
    N. Yilmaz
    A. B. Donaldson
    W. Gill
    R. E. Lucero
    Journal of Visualization, 2009, 12 : 47 - 55
  • [50] RESPONSE TO ACOUSTIC FORCING OF LAMINAR COFLOW JET DIFFUSION FLAMES
    Chrystie, Robin
    Chung, Suk Ho
    COMBUSTION SCIENCE AND TECHNOLOGY, 2014, 186 (4-5) : 409 - 420