Development of blind image deconvolution and its applications

被引:0
|
作者
Jiang, Ming [1 ]
Wang, Ge [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Univ Iowa, Dept Radiol, CT Micro CT Lab, Iowa City, IA 52242 USA
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper is a supplement and update to the reviews by Kundur and Hatzinakos [7,8] on blind image deconvolution. Most of the methods reviewed in [7,8] require that the PSF and the original image must be irreducible. However, this irreducibility assumption is not true in some important types of applications, such as when the PSF is Gaussian, which is a good model for many imaging systems. After a brief summary of existing blind deconvolution methods, we report the recent development in this field with an emphasis on Gaussian blind deconvolution and its clinical applications.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [41] Blind image deconvolution via dispersion minimization
    Vural, C
    Sethares, WA
    DIGITAL SIGNAL PROCESSING, 2006, 16 (02) : 137 - 148
  • [42] An attractor space approach to blind image deconvolution
    Yap, KH
    Guan, L
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1833 - 1836
  • [43] Microarray Image Restoration Using Blind Deconvolution
    Manjunath, S. S.
    Dappin, Satish G.
    Sahana, B.
    Rangarajan, Lalitha
    2009 INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY, PROCEEDINGS, 2009, : 94 - +
  • [44] Ensemble learning for blind image separation and deconvolution
    Miskin, J
    MacKay, DJC
    ADVANCES IN INDEPENDENT COMPONENT ANALYSIS, 2000, : 123 - 141
  • [45] Regularization of the image division approach to blind deconvolution
    Optical Sciences Center, University of Arizona, Tucson, AZ 85721, United States
    Appl. Opt., 11 (2232-2239):
  • [46] Iterative statistical approach to blind image deconvolution
    Lam, EY
    Goodman, JW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (07) : 1177 - 1184
  • [47] A REGIONAL MULTIMODULUS ALGORITHM FOR BLIND IMAGE DECONVOLUTION
    Mendes Filho, Joao
    Miranda, Maria D.
    Silva, Magno T. M.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4512 - 4516
  • [48] A variational approach for Bayesian blind image deconvolution
    Likas, AC
    Galatsanos, NP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) : 2222 - 2233
  • [49] Image Completion and Blind Deconvolution: Model and Algorithm
    Lin, Xue-lei
    Ng, Michael K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (03)
  • [50] Blind Image Deconvolution Using Variational Deep Image Prior
    Huo D.
    Masoumzadeh A.
    Kushol R.
    Yang Y.-H.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11472 - 11483