Orthogonal tensor decompositions

被引:269
|
作者
Kolda, TG [1 ]
机构
[1] Sandia Natl Labs, Computat Sci & Math Res Dept, Livermore, CA 94551 USA
关键词
tensor decomposition; singular value decomposition; principal components analysis; multidimensional arrays;
D O I
10.1137/S0895479800368354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore the orthogonal decomposition of tensors ( also known as multidimensional arrays or n-way arrays) using two different definitions of orthogonality. We present numerous examples to illustrate the difficulties in understanding such decompositions. We conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl., 269 (1998), pp. 307-329].
引用
收藏
页码:243 / 255
页数:13
相关论文
共 50 条
  • [31] Moment tensor decompositions revisited
    Václav Vavryčuk
    Journal of Seismology, 2015, 19 : 231 - 252
  • [32] On orthogonal symmetric chain decompositions
    Daeubel, Karl
    Jaeger, Sven
    Muetze, Torsten
    Scheucher, Manfred
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [33] Counting Tensor Rank Decompositions
    Obster, Dennis
    Sasakura, Naoki
    UNIVERSE, 2021, 7 (08)
  • [34] Smoothed Analysis of Tensor Decompositions
    Bhaskara, Aditya
    Charikar, Moses
    Moitra, Ankur
    Vijayaraghavan, Aravindan
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 594 - 603
  • [35] Subspaces and Orthogonal Decompositions Generated by Bounded Orthogonal Systems
    Olivier Guédon
    Shahar Mendelson
    Alain Pajor
    Nicole Tomczak-Jaegermann
    Positivity, 2007, 11 : 269 - 283
  • [36] Subspaces and orthogonal decompositions generated by bounded orthogonal systems
    Guedon, Olivier
    Mendelson, Shahar
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    POSITIVITY, 2007, 11 (02) : 269 - 283
  • [37] Facial Recognition Using Tensor-Tensor Decompositions
    Hao, Ning
    Kilmer, Misha E.
    Braman, Karen
    Hoover, Randy C.
    SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01): : 437 - 463
  • [38] Tensor decompositions on simplicial complexes with invariance
    De las Cuevas, Gemma
    Riera, Matt Hoogsteder
    Netzer, Tim
    JOURNAL OF SYMBOLIC COMPUTATION, 2024, 124
  • [39] Orthogonal matrix decompositions in systems and control
    van Dooren, PM
    ERROR CONTROL AND ADAPTIVITY IN SCIENTIFIC COMPUTING, 1999, 536 : 159 - 175
  • [40] TENSOR-CUR DECOMPOSITIONS FOR TENSOR-BASED DATA
    Mahoney, Michael W.
    Maggioni, Mauro
    Drineas, Petros
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 957 - 987