Online Clustering for Novelty Detection and Concept Drift in Data Streams

被引:6
|
作者
Garcia, Kemilly Dearo [1 ,2 ]
Poel, Mannes [1 ]
Kok, Joost N. [1 ]
de Carvalho, Andre C. P. L. F. [2 ]
机构
[1] Univ Twente, Enschede, Netherlands
[2] Univ Sao Paulo, ICMC, Sao Paulo, Brazil
来源
关键词
Data stream; Concept drift; Novelty detection; Online learning; CLASSIFICATION;
D O I
10.1007/978-3-030-30244-3_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data streams are related to large amounts of data that can continuously arrive with a probability distribution that may change over time. Depending on the changes in the data distribution, different phenomena can occur, like new classes can appear or concept drift can occur in existing classes. Machine Learning algorithms have been often used to model this data. New classes are patterns that were not seen during the training of the current classification model, but appear after some time. Concept drift occurs when the concepts associated with a dataset change as new data arrive. This paper proposes a new algorithm based on kNN that uses micro-clusters as prototypes and incrementally updates the micro-clusters or creates new micro-clusters when novelties are detected. In the online phase, each instance close to a micro-cluster is considered an extension of the micro-cluster, being used to adapt the model to concept drift. The proposed algorithm is experimentally compared with a stateof-the-art classifier from the data stream literature and one baseline. According to the experimental results, the proposed algorithm increases the predictive performance over time by incrementally learning changes in the data distribution.
引用
收藏
页码:448 / 459
页数:12
相关论文
共 50 条
  • [31] A Multiscale Concept Drift Detection Method for Learning from Data Streams
    Wang, XueSong
    Kang, Qi
    Zhou, MengChu
    Yao, SiYa
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2018, : 786 - 790
  • [32] SDDM: an interpretable statistical concept drift detection method for data streams
    Simona Micevska
    Ahmed Awad
    Sherif Sakr
    Journal of Intelligent Information Systems, 2021, 56 : 459 - 484
  • [33] A Lightweight Concept Drift Detection and Adaptation Framework for IoT Data Streams
    Yang L.
    Shami A.
    IEEE Internet of Things Magazine, 2021, 4 (02): : 96 - 101
  • [34] Ensemble framework for concept drift detection and class imbalance in data streams
    S P.
    R A.U.
    Multimedia Tools and Applications, 2025, 84 (11) : 8823 - 8837
  • [35] SDDM: an interpretable statistical concept drift detection method for data streams
    Micevska, Simona
    Awad, Ahmed
    Sakr, Sherif
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2021, 56 (03) : 459 - 484
  • [36] Unsupervised concept drift detection for multi-label data streams
    Ege Berkay Gulcan
    Fazli Can
    Artificial Intelligence Review, 2023, 56 : 2401 - 2434
  • [37] Unsupervised concept drift detection for multi-label data streams
    Gulcan, Ege Berkay
    Can, Fazli
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2401 - 2434
  • [38] CONCEPT DRIFT AND EVOLUTION DETECTION IN FUSION DIAGNOSIS WITH EVOLVING DATA STREAMS
    Abdolsamadi, Amirmahyar
    Wang, Pingfeng
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 2A, 2017,
  • [39] Concept Drift Detection in Data Stream Clustering and its Application on Weather Data
    Namitha, K.
    Kumar, Santhosh G.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS, 2020, 11 (01) : 67 - 85
  • [40] Concept Drift and Anomaly Detection in Graph Streams
    Zambon, Daniele
    Alippi, Cesare
    Livi, Lorenzo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5592 - 5605