Atomic models for the motional Stark effect diagnostic

被引:30
|
作者
Gu, M. F. [1 ]
Holcomb, C. T. [1 ]
Jayakuma, R. J. [1 ]
Allen, S. L. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.1088/0953-4075/41/9/095701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present detailed atomic physics models for the motional Stark effect (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam travelling in a magnetic field in collisions with electrons, ions and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer a line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger pi/sigma intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0 to 2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time-dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Progress on the motional Stark effect with laser-induced fluorescence diagnostic
    Foley, E. L.
    Levinton, F. M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [32] Development of signal analysis method for the motional Stark effect diagnostic on EAST
    Fu, Jia
    Lyu, Bo
    Liu, Haiqing
    Li, Yingying
    Liu, Dongmei
    Wei, Yongqing
    Fan, Chao
    Shi, Yuejiang
    Wu, Zhenwei
    Wan, Baonian
    PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (10)
  • [33] The motional Stark effect diagnostic on TEXTOR-94: First measurements
    Soetens, T
    Jaspers, R
    Desoppere, E
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (01): : 890 - 893
  • [34] Optical and mechanical design of C-Mod Motional Stark Effect diagnostic
    Simon, DI
    Bretz, NL
    Marmar, E
    Bravenec, R
    Parsells, RF
    18TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 1999, : 349 - 351
  • [35] Simulation of the multi-channel motional Stark effect diagnostic on EAST Tokamak
    Yu, Qingjiang
    Fu, Jia
    Liao, Ken
    Li, Yichao
    Chen, Dong
    Li, Yingying
    Rowan, William
    Huang, He
    Zhang, Hongming
    Wang, Fudi
    Wu, Zhenwei
    Wan, Baonian
    Ye, Minyou
    Lyu, Bo
    FUSION ENGINEERING AND DESIGN, 2020, 153
  • [36] Development of a robotic calibration system for the motional Stark effect diagnostic on the EAST tokamak
    Deng, H. Q.
    Fu, J.
    Yang, Y.
    Li, Y. C.
    Fu, S. Y.
    Lin, Z. C.
    Ji, H. J.
    Lu, D. A.
    Jin, Y. F.
    Zhang, H. M.
    Wang, F. D.
    Qian, J. P.
    Ding, R.
    Lyu, B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2025, 96 (04):
  • [37] Two-point motional Stark effect diagnostic for Madison Symmetric Torus
    Ko, J.
    Den Hartog, D. J.
    Caspary, K. J.
    Den Hartog, E. A.
    Pablant, N. A.
    Summers, H. P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [38] Simulation of the motional Stark effect diagnostic gas-filled torus calibration
    Yuh, Howard Y.
    Levinton, F. M.
    Scott, S. D.
    Ko, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [39] The motional Stark effect diagnostic for ITER using a line-shift approach
    Foley, E. L.
    Levinton, F. M.
    Yuh, H. Y.
    Zakharov, L. E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [40] A Spectrally Resolved Motional Stark Effect Diagnostic for the TJ-II Stellarator
    McCarthy, K. J.
    Panadero, N.
    Lopez-Fraguas, A.
    Hernandez, J.
    van Milligen, B.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2015, 55 (06) : 459 - 469