Atomic models for the motional Stark effect diagnostic

被引:30
|
作者
Gu, M. F. [1 ]
Holcomb, C. T. [1 ]
Jayakuma, R. J. [1 ]
Allen, S. L. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.1088/0953-4075/41/9/095701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present detailed atomic physics models for the motional Stark effect (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam travelling in a magnetic field in collisions with electrons, ions and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer a line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger pi/sigma intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0 to 2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time-dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Motional Stark effect diagnostic on TEXTOR
    Jakubowska, K
    De Bock, M
    Jaspers, R
    von Hellermann, M
    Shmaenok, L
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10): : 3475 - 3477
  • [2] The motional Stark effect diagnostic on NSTX
    Levinton, F. M.
    Yuh, H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [3] The motional Stark effect diagnostic for ITER
    Foley, E. L.
    Levinton, F. M.
    Uzun-Kaymak, I. U.
    Galante, M. E.
    Zhang, X.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (07):
  • [4] The MAST motional Stark effect diagnostic
    Conway, N. J.
    De Bock, M. F. M.
    Michael, C. A.
    Walsh, M. J.
    Carolan, P. G.
    Hawkes, N. C.
    Rachlew, E.
    McCone, J. F. G.
    Shibaev, S.
    Wearing, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [5] Preparations for the motional Stark effect diagnostic on EAST
    Fu, J.
    Li, Y. Y.
    Lyu, B.
    Sheng, P.
    Zhang, Y.
    Yin, X. H.
    Shi, Y. J.
    Yu, Y.
    Ye, M. Y.
    Wan, B. N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [6] Design of the motional Stark effect diagnostic in FTU
    De Angelis, R
    Sarkissian, A
    Segre, SE
    Tartoni, N
    Zanza, V
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 1015 - 1017
  • [7] The motional stark effect diagnostic on TFTR.
    Levinton, FM
    ATOMIC PROCESSES IN PLASMAS: TENTH TOPICAL CONFERENCE, 1996, (381): : 143 - 150
  • [8] Motional Stark effect diagnostic pilot experiment for MAST
    Kuldkepp, M.
    Walsh, M. J.
    Carolan, P. G.
    Conway, N. J.
    Hawkes, N. C.
    McCone, J.
    Rachlew, E.
    Wearing, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [9] Calibration of the upgraded motional Stark effect diagnostic on TFTR
    Levinton, FM
    Batha, SH
    Zarnstorff, MC
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (01): : 926 - 929
  • [10] Design of the Tore Supra motional Stark effect diagnostic
    Lotte, Ph.
    Echard, B.
    Hess, W.
    Migozzi, J.B.
    Rev. Sci. Instrum., 1600, 10