The smooth spectral counting function and the total phase shift for quantum billiards

被引:8
|
作者
Smilansky, U
Ussishkin, I
机构
[1] Department of Physics of Complex Systems, Weizmann Institute of Science
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 10期
关键词
D O I
10.1088/0305-4470/29/10/033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interior-exterior duality provides a means to extract spectral information (for the interior problem) from the scattering matrix (which is relevant to the exterior problem). We study the smooth spectral counting function for the interior, and compare it to the smooth total phase shift in the exterior. To leading order in the semiclassical approximation these functions are known to coincide. Using various techniques, we study the higher-order corrections of the two functions and discuss the difference between them.
引用
收藏
页码:2587 / 2597
页数:11
相关论文
共 50 条
  • [41] Potential energy function information from quantum phase shift using the variable phase method
    Lemes, Nelson H. T.
    Braga, Joao P.
    Alves, Marcio O.
    Costa, Ederson D'M
    JOURNAL OF MOLECULAR MODELING, 2014, 20 (07)
  • [42] Potential energy function information from quantum phase shift using the variable phase method
    Nelson H. T. Lemes
    João P. Braga
    Márcio O. Alves
    Éderson D’M. Costa
    Journal of Molecular Modeling, 2014, 20
  • [43] Spectral Analog of the Gouy Phase Shift
    Andresen, Esben Ravn
    Finot, Christophe
    Oron, Dan
    Rigneault, Herve
    PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [44] Quark-antiquark scattering phase shift and meson spectral function in pion superfluid
    Xia, Tao
    Hu, Jin
    Mao, Shijun
    CHINESE PHYSICS C, 2019, 43 (05)
  • [45] Quark-antiquark scattering phase shift and meson spectral function in pion superfluid
    夏涛
    胡进
    毛施君
    Chinese Physics C, 2019, (05) : 51 - 60
  • [46] WITTEN INDEX, AXIAL ANOMALY, AND KREIN SPECTRAL SHIFT FUNCTION IN SUPERSYMMETRIC QUANTUM-MECHANICS
    BOLLE, D
    GESZTESY, F
    GROSSE, H
    SCHWEIGER, W
    SIMON, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (07) : 1512 - 1525
  • [47] Representation of the spectral shift function and spectral asymptotics for trapping perturbations
    Bruneau, V
    Petkov, V
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) : 2081 - 2119
  • [48] CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION
    GEISLER, R
    KOSTRYKIN, V
    SCHRADER, R
    REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (02) : 161 - 181
  • [49] Spectral Shift Function and Eigenvalues of the Perturbed Operator
    Aliev A.R.
    Eyvazov E.H.
    Journal of Mathematical Sciences, 2024, 282 (4) : 464 - 472
  • [50] On the Weak and Ergodic Limit of the Spectral Shift Function
    Vita Borovyk
    Konstantin A. Makarov
    Letters in Mathematical Physics, 2012, 100 : 1 - 15