The first, the second and the fourth Painleve transcendents are of finite order

被引:9
|
作者
Shimomura, S [1 ]
机构
[1] Keio Univ, Dept Math, Yokohama, Kanagawa 2238522, Japan
关键词
Painleve equations; growth order;
D O I
10.3792/pjaa.77.42
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every solution of the first Painleve equation has the finite growth order. The second and the fourth Painleve equations have the same property.
引用
收藏
页码:42 / 45
页数:4
相关论文
共 50 条
  • [21] MATRIX GENERALIZATION OF PAINLEVE TRANSCENDENTS
    SADOVNIKOV, BI
    INOZEMTSEVA, NG
    PHYSICA A, 1990, 162 (02): : 255 - 260
  • [22] Hankel determinants for a singular complex weight and the first and third Painleve transcendents
    Xu, Shuai-Xia
    Dai, Dan
    Zhao, Yu-Qiu
    JOURNAL OF APPROXIMATION THEORY, 2016, 205 : 64 - 92
  • [23] A truncation for obtaining all the first degree birational transformations of the Painleve transcendents
    Conte, R
    Musette, M
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2002, 9 (Suppl 1) : 14 - 28
  • [24] Power expansions for solution of the fourth-order analog to the first Painleve equation
    Kudryashov, Nikolai A.
    Efimova, Olga Yu.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (01) : 110 - 124
  • [25] On special solutions of second and fourth Painleve hierarchies
    Sakka, A. H.
    PHYSICS LETTERS A, 2009, 373 (06) : 611 - 615
  • [26] Solutions of the second and fourth Painleve equations, I
    Umemura, H
    Watanabe, H
    NAGOYA MATHEMATICAL JOURNAL, 1997, 148 : 151 - 198
  • [27] Meromorphic Painleve transcendents at a fixed singularity
    Kaneko, Kazuo
    Ohyama, Yousuke
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (8-9) : 861 - 875
  • [28] Uniqueness Theorems for Solutions of Painleve Transcendents
    Zhang, X. B.
    Han, Y.
    Xu, J. F.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (04): : 208 - 214
  • [29] SELF-DUALITY AND THE PAINLEVE TRANSCENDENTS
    MASON, LJ
    WOODHOUSE, NMJ
    NONLINEARITY, 1993, 6 (04) : 569 - 581
  • [30] The meromorphic nature of the sixth painleve transcendents
    Hinkkanen, A
    Laine, I
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 94 (1): : 319 - 342