Numerical solution of a nonlinear time-optimal control problem

被引:2
|
作者
Shevchenko, G. V. [1 ]
机构
[1] Russian Acad Sci, Inst Math, Siberian Div, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
control; optimal control simplex; adjacent simplex; simplex covering;
D O I
10.1134/S0965542511040154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear systems with a stationary (i.e., explicitly time independent) right-hand side are considered. For time-optimal control problems with such systems, an iterative method is proposed that is a generalization of one used to solve nonlinear time-optimal control problems for systems divided by phase states and controls. The method is based on constructing finite sequences of simplices with their vertices lying on the boundaries of attainability domains. Assuming that the system is controllable, it is proved that the minimizing sequence converges to an E >-optimal solution after a finite number of iterations. A pair {T, u(center dot)} is called an E >-optimal solution if |T - T (opt)| - E >, where T (opt) is the optimal time required for moving the system from the initial state to the origin and u is an admissible control that moves the system to an E >-neighborhood of the origin over the time T.
引用
收藏
页码:537 / 549
页数:13
相关论文
共 50 条
  • [41] SOME PROBLEM OF LINEAR TIME-OPTIMAL CONTROL
    WALCZAK, S
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1975, 23 (01): : 81 - 86
  • [42] SINGULAR CONTROL ABSENCE IN THE TIME-OPTIMAL PROBLEM
    BUGROV, DI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (06): : 52 - 55
  • [43] ON THE DISCRETE TIME-OPTIMAL REGULAR CONTROL PROBLEM
    FAHMY, MM
    HANAFY, AAR
    SAKR, MF
    INFORMATION AND CONTROL, 1980, 44 (03): : 223 - 235
  • [44] A time-optimal solution for the path cover problem on cographs
    Nakano, K
    Olariu, S
    Zomaya, AY
    THEORETICAL COMPUTER SCIENCE, 2003, 290 (03) : 1541 - 1556
  • [45] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 62 - 71
  • [46] Time-optimal solution for the path cover problem on cographs
    Nakano, K.
    Olariu, S.
    Zomaya, A.Y.
    Proceedings of the International Parallel Processing Symposium, IPPS, 1999, : 26 - 30
  • [47] Asymptotics of the Optimal Time in a Time-Optimal Control Problem with a Small Parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 : S62 - S71
  • [48] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 61 - 70
  • [49] A time-optimal solution for the path cover problem on cographs
    Nakano, K
    Olariu, S
    Zomaya, AY
    IPPS/SPDP 1999: 13TH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM & 10TH SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 1999, : 26 - 30
  • [50] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (01): : 71 - 80