Graphene aerogel stabilized phase change material for thermal energy storage

被引:28
|
作者
Zhao, Yajing [1 ]
Zhang, Kai [1 ]
Min, Xin [1 ]
Xiao, Jun [1 ]
Xu, Ziling
Huang, Zhaohui
Liu, Yan'gai
Wu, Xiaowen [1 ]
Fang, Minghao [1 ]
机构
[1] China Univ Geosci Beijing, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Graphene aerogel; Polyethylene glycols; Three-dimensional porous structure; Thermal conductivity; Phase change material; ACID/EXPANDED PERLITE COMPOSITE; POLYETHYLENE-GLYCOL; CONVERSION; CONDUCTIVITY;
D O I
10.1016/j.csite.2022.102497
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase change material (PCM) with thermal energy storage capacity has been a hot topic due to the advantages of satisfying the demand for energy storage, saving and conversion. In this work, graphene oxide (GO) was introduced to prepare a three-dimensional (3D) continuous network of graphene aerogel (GA) via a simple hydrothermal process, and the GA was further employed to pack polyethylene glycols (PEG). Benefited from the abundant porous structure and high specific surface area, the mass fraction of PEG in the composite PCM was up to 96.0 wt%. Besides, the heat latent of the composite was 223.2 J/g, illustrating a high energy storage density. Moreover, due to the crosslinking graphene skeleton and its inherent high thermal conductivity, the heat transfer rate was enhanced to 116% of the pure PEG. This work could simultaneously solve the drawbacks of leakage and low thermal conductivity of PCM. And the composite PCM could be considered as a clean, energy-saving and recycled material in the application of building heat preservation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage
    Kaya, Gulbahar Bahsi
    Kim, Yunsang
    Callahan, Kyle
    Kundu, Santanu
    CARBOHYDRATE POLYMERS, 2022, 276
  • [22] Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage
    Li, Jianwen
    Zuo, Xiaochao
    Zhao, Xiaoguang
    Li, Daokui
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2019, 183
  • [23] Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage
    Li, Chuanchang
    Xie, Baoshan
    Chen, Deliang
    Chen, Jian
    Li, Wei
    Chen, Zhongsheng
    Gibb, Stuart W.
    Long, Yi
    ENERGY, 2019, 166 (246-255) : 246 - 255
  • [24] Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage
    Yang, Jing
    Zhang, Enwei
    Li, Xiaofeng
    Zhang, Yiting
    Qu, Jin
    Yu, Zhong-Zhen
    CARBON, 2016, 98 : 50 - 57
  • [25] Graphene Modified Montmorillonite Based Phase Change Material for Thermal Energy Storage with Enhanced Interfacial Thermal Transfer
    Kang, Peng
    Wang, Hongjie
    Wan, Pengfei
    Wang, Jianwei
    Luo, Hua
    Zhou, Senhai
    Li, Xiaoyu
    Yang, Jun
    CHEMISTRYSELECT, 2020, 5 (20): : 6040 - 6047
  • [26] Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material
    Liu, Xia
    Rao, Zhonghao
    THERMOCHIMICA ACTA, 2017, 647 : 15 - 21
  • [27] Thermal properties and crystallization kinetics of pentaglycerine/graphene nanoplatelets composite phase change material for thermal energy storage
    Zhang, Nan
    Jing, Yaoge
    Song, Yanlin
    Du, Yanxia
    Yuan, Yanping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (01) : 448 - 459
  • [28] Porous ceramic stabilized phase change materials for thermal energy storage
    Liu, Songyang
    Yang, Huaming
    RSC ADVANCES, 2016, 6 (53): : 48033 - 48042
  • [29] Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide
    Qi, Guo-Qiang
    Liang, Cheng-Lu
    Bao, Rui-Ying
    Liu, Zheng-Ying
    Yang, Wei
    Xie, Bang-Hu
    Yang, Ming-Bo
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 123 : 171 - 177
  • [30] Phase change material with flexible crosslinking for thermal energy storage
    Wang, Yi
    Yuan, Anqian
    Zhao, Yuanyang
    Liu, Qinfeng
    Lei, Jingxin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (13)