Online Compressive Transformer for End-to-End Speech Recognition

被引:10
|
作者
Leong, Chi-Hang [1 ]
Huang, Yu-Han [1 ]
Chien, Jen-Tzung [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Elect & Comp Engn, Taipei, Taiwan
来源
关键词
Online processing and learning; compressive transformer; end-to-end speech recognition; SELF-ATTENTION;
D O I
10.21437/Interspeech.2021-545
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Traditionally, transformer with connectionist temporal classification (CTC) was developed for offline speech recognition where the transcription was generated after the whole utterance has been spoken. However, it is crucial to carry out online transcription of speech signal for many applications including live broadcasting and meeting. This paper presents an online transformer for real-time speech recognition where online transcription is generated chunk by chuck. In particular, an online compressive transformer (OCT) is proposed for end-to-end speech recognition. This OCT aims to generate immediate transcription for each audio chunk while the comparable performance with offline speech recognition can be still achieved. In the implementation, OCT tightly combines with both CTC and recurrent neural network transducer by minimizing their losses for training. In addition, this OCT systematically merges with compressive memory to reduce potential performance degradation due to online processing. This degradation is caused by online transcription which is generated by the chunks without history information. The experiments on speech recognition show that OCT does not only obtain comparable performance with offline transformer, but also work faster than the baseline model.
引用
收藏
页码:2082 / 2086
页数:5
相关论文
共 50 条
  • [21] End-to-End Speech Recognition in Russian
    Markovnikov, Nikita
    Kipyatkova, Irina
    Lyakso, Elena
    SPEECH AND COMPUTER (SPECOM 2018), 2018, 11096 : 377 - 386
  • [22] END-TO-END MULTIMODAL SPEECH RECOGNITION
    Palaskar, Shruti
    Sanabria, Ramon
    Metze, Florian
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5774 - 5778
  • [23] Overview of end-to-end speech recognition
    Wang, Song
    Li, Guanyu
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [24] End-to-end Accented Speech Recognition
    Viglino, Thibault
    Motlicek, Petr
    Cernak, Milos
    INTERSPEECH 2019, 2019, : 2140 - 2144
  • [25] Multichannel End-to-end Speech Recognition
    Ochiai, Tsubasa
    Watanabe, Shinji
    Hori, Takaaki
    Hershey, John R.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [26] END-TO-END AUDIOVISUAL SPEECH RECOGNITION
    Petridis, Stavros
    Stafylakis, Themos
    Ma, Pingchuan
    Cai, Feipeng
    Tzimiropoulos, Georgios
    Pantic, Maja
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6548 - 6552
  • [27] END-TO-END ANCHORED SPEECH RECOGNITION
    Wang, Yiming
    Fan, Xing
    Chen, I-Fan
    Liu, Yuzong
    Chen, Tongfei
    Hoffmeister, Bjorn
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7090 - 7094
  • [28] IMPROVING UNSUPERVISED STYLE TRANSFER IN END-TO-END SPEECH SYNTHESIS WITH END-TO-END SPEECH RECOGNITION
    Liu, Da-Rong
    Yang, Chi-Yu
    Wu, Szu-Lin
    Lee, Hung-Yi
    2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 640 - 647
  • [29] Segment boundary detection directed attention for online end-to-end speech recognition
    Junfeng Hou
    Wu Guo
    Yan Song
    Li-Rong Dai
    EURASIP Journal on Audio, Speech, and Music Processing, 2020
  • [30] Online Hybrid CTC/Attention End-to-End Automatic Speech Recognition Architecture
    Miao, Haoran
    Cheng, Gaofeng
    Zhang, Pengyuan
    Yan, Yonghong
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 1452 - 1465