Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level

被引:370
|
作者
Mennucci, B
Cammi, R
Tomasi, J
机构
[1] Univ Pisa, Dipartimento Chim & Chim Ind, I-56126 Pisa, Italy
[2] Univ Parma, Dipartimento Chim Gen & Inorgan, I-43100 Parma, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 1998年 / 109卷 / 07期
关键词
D O I
10.1063/1.476878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of the solvation on excited states are studied in the framework of a nonequilibrium regime between solute and solvent charge distributions. The approach, which exploits a separation of the polarization into slow and fast components, is inserted in a new formulation of the recently developed continuum solvation model known as integral equation formalism. This new version, implying a large computational gain both in time consuming and memory occupation, is here implemented at the Hartree-Fock level as well as at the multiconfiguration self-consistent field and configuration interaction levels. Examples of application of the method to solvatochromic shifts for low-lying excitation energies of formaldehyde, acetaldehyde, and acetone in water are shown. (C) 1998 American Institute of Physics.
引用
收藏
页码:2798 / 2807
页数:10
相关论文
共 50 条