Homomorphism-Homogeneous Graphs

被引:24
|
作者
Rusinov, Momchil [1 ]
Schweitzer, Pascal [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
homomorphisms; homogeneity; graphs;
D O I
10.1002/jgt.20478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer two open questions posed by Cameron and Nesetril concerning homomorphism-homogeneous graphs. In particular we show, by giving a characterization of these graphs, that extendability to monomorphism or to homomorphism leads to the same class of graphs when defining homomorphism homogeneity. Further, we show that there are homomorphism-homogeneous graphs that do not contain the Rado graph as a spanning subgraph 'answering the second open question. We also treat the case of homomorphism-homogeneous graphs with loops allowed, showing that the corresponding decision problem is co-NP complete. Finally, we extend the list of considered morphism-types and show that the graphs for which monomorphisms can be extended to epimorphisms are complements of homomorphism-homogeneous graphs. (C) 2010 Wiley Periodicals. Inc. J Graph Theory 65: 253-262, 2010
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [21] Homomorphism-homogeneous normal bandsHomomorphism-homogeneous normal bandsW. Yang, D. Yang
    Wenjie Yang
    Dandan Yang
    Semigroup Forum, 2025, 110 (2) : 467 - 486
  • [22] ON HOMOMORPHISM GRAPHS
    Brandt, Sebastian
    Chang, Yi-Jun
    Grebik, Jan
    Grunau, Christoph
    Rozhon, Vaclav
    Vidnyanszky, Zoltan
    FORUM OF MATHEMATICS PI, 2024, 12
  • [23] HOMOMORPHISM THEOREMS FOR GRAPHS
    DIRAC, GA
    MATHEMATISCHE ANNALEN, 1964, 153 (01) : 69 - 80
  • [24] The classification of homomorphism homogeneous tournaments
    Feller, Thomas
    Pech, Christian
    Pech, Maja
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 89
  • [25] The homomorphism order of signed graphs
    Naserasr, Reza
    Sen, Sagnik
    Sopena, Éric
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 169 - 182
  • [26] HOMOMORPHISM POLYNOMIALS OF CHEMICAL GRAPHS
    Berman, D. M.
    Holladay, K. W.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1987, 1 (04) : 405 - 414
  • [27] Antichains in the homomorphism order of graphs
    Duffus, D.
    Erdos, P. L.
    Nesetril, J.
    Soukup, L.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (04): : 571 - 583
  • [28] Homomorphism bounded classes of graphs
    Marshall, T
    Nasraser, R
    Nesetril, J
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (04) : 592 - 600
  • [29] The homomorphism structure of classes of graphs
    Nesetril, J
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2): : 177 - 184
  • [30] HOMOMORPHISM THEOREM FOR FINITE GRAPHS
    ASCHBACHER, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) : 468 - 470