Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model

被引:49
|
作者
Wang, Xiaofei [1 ]
Fullana, Jose-Maria [1 ]
Lagree, Pierre-Yves [2 ]
机构
[1] Univ Paris 06, Sorbonne Univ, UMR 7190, Inst Jean Rond dAlembert, Paris, France
[2] CNRS, UMR 7190, Inst Jean Rond dAlembert, Paris, France
关键词
blood flow; numerical simulation; 1D flow modeling; vascular network; FLUID-STRUCTURE INTERACTION; ONE-DIMENSIONAL MODEL; PULSE-WAVE PROPAGATION; HUMAN ARTERIAL NETWORK; COMPUTER-SIMULATION; MATHEMATICAL-MODEL; VALIDATION; MECHANICS; PRESSURE; TUBES;
D O I
10.1080/10255842.2014.948428
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed.
引用
收藏
页码:1704 / 1725
页数:22
相关论文
共 50 条
  • [21] Reflectivity of 1D photonic crystals: A comparison of computational schemes with experimental results
    Perez-Huerta, J. S.
    Ariza-Flores, D.
    Castro-Garcia, R.
    Mochan, W. L.
    Ortiz, G. P.
    Agarwal, V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (11):
  • [22] COMPARISON OF 1D AND 2D FLOW NUMERICAL ANALYSIS APPLIED TO TWO STAGE PULSE TUBE CRYOCOOLER
    Krishnappa, G. B.
    Madhu, D.
    Kasthurirengan, S.
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 57A AND 57B, 2012, 1434 : 1157 - 1164
  • [23] A time-dependent non-Newtonian extension of a 1D blood flow model
    Ghigo, A. R.
    Lagree, P. -Y.
    Fullana, J. -M.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2018, 253 : 36 - 49
  • [24] Patient-Specific Modeling of Cerebral Blood Flow: Geometrical Variations in a 1D Model
    Mulder G.
    Marzo A.
    Bogaerds A.C.B.
    Coley S.C.
    Rongen P.
    Hose D.R.
    van de Vosse F.N.
    Cardiovascular Engineering and Technology, 2011, 2 (04) : 334 - 348
  • [25] ASSESSMENT OF DIFFERENT 1D NUMERICAL SCHEMES FOR STEADY FLOWS OVER A GEOMETRICAL DISCONTINUITY
    Franzini, Fabian
    Murillo, Javier
    Soares-Frazao, Sandra
    PROCEEDINGS OF THE 36TH IAHR WORLD CONGRESS: DELTAS OF THE FUTURE AND WHAT HAPPENS UPSTREAM, 2015, : 3725 - 3735
  • [26] Comparison of 1D models of water flow in unsaturated soils
    Gandolfi, C.
    Facchi, A.
    Maggi, D.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2006, 21 (12) : 1759 - 1764
  • [27] COMPARISON OF EXPERIMENTAL, 3D AND 1D MODEL FOR A MIXED-FLOW TURBINE UNDER PULSATING FLOW CONDITIONS
    Chiong, Meng Soon
    Padzillah, Muhamad Hasbullah
    Rajoo, Srithar
    Romagnoli, Alessandro
    Costall, Aaron W.
    Martinez-Botas, Ricardo F.
    JURNAL TEKNOLOGI, 2015, 77 (08):
  • [28] NUMERICAL SIMULATIONS IN THE MALA NITRA STREAM BY 1D MODEL
    Szomorova, Lenka
    Halaj, Peter
    ACTA SCIENTIARUM POLONORUM-FORMATIO CIRCUMIECTUS, 2015, 14 (02) : 185 - 194
  • [29] Global existence for a nonlinear model of 1D chemically reacting viscoelastic body
    Barta, Tomas
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2014, 5 (02): : 399 - 423