Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model

被引:49
|
作者
Wang, Xiaofei [1 ]
Fullana, Jose-Maria [1 ]
Lagree, Pierre-Yves [2 ]
机构
[1] Univ Paris 06, Sorbonne Univ, UMR 7190, Inst Jean Rond dAlembert, Paris, France
[2] CNRS, UMR 7190, Inst Jean Rond dAlembert, Paris, France
关键词
blood flow; numerical simulation; 1D flow modeling; vascular network; FLUID-STRUCTURE INTERACTION; ONE-DIMENSIONAL MODEL; PULSE-WAVE PROPAGATION; HUMAN ARTERIAL NETWORK; COMPUTER-SIMULATION; MATHEMATICAL-MODEL; VALIDATION; MECHANICS; PRESSURE; TUBES;
D O I
10.1080/10255842.2014.948428
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed.
引用
收藏
页码:1704 / 1725
页数:22
相关论文
共 50 条
  • [1] Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes
    Montecinos, Gino I.
    Mueller, Lucas O.
    Toro, Eleuterio F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 266 : 101 - 123
  • [2] Comparison of different numerical schemes for 1D conservation laws
    Nwaigwe, Chinedu
    Mungkasi, Sudi
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (03) : 537 - 552
  • [3] Flux vector splitting schemes applied to a conservative 1D blood flow model with transport for arteries and veins
    Spilimbergo, Alessandra
    Toro, Eleuterio F.
    Siviglia, Annunziato
    Muller, Lucas O.
    COMPUTERS & FLUIDS, 2024, 271
  • [4] Fluid friction and wall viscosity of the 1D blood flow model
    Wang, Xiao-Fei
    Nishi, Shohei
    Matsukawa, Mami
    Ghigo, Arthur
    Lagree, Pierre-Yves
    Fullana, Jose-Maria
    JOURNAL OF BIOMECHANICS, 2016, 49 (04) : 565 - 571
  • [5] Modeling blood flow in viscoelastic vessels: the 1D augmented fluid-structure interaction system
    Bertaglia, Giulia
    Caleffi, Valerio
    Valiani, Alessandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 360
  • [6] Structural stability of a 1D compressible viscoelastic fluid model
    Huo, Xiaokai
    Yong, Wen-An
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1264 - 1284
  • [7] 1D Viscoelastic Flow in a Circular Straight Tube with Variable Radius
    Carapau, Fernando M. L.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2010, 19 (D10): : 20 - 39
  • [8] PREDICTING ARTERIAL FLOW AND PRESSURE DYNAMICS USING A 1D FLUID DYNAMICS MODEL WITH A VISCOELASTIC WALL
    Steele, Brooke N.
    Valdez-Jasso, Daniela
    Haider, Mansoor A.
    Olufsen, Mette S.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1123 - 1143
  • [9] Spectral Models for 1D Blood Flow Simulations
    Tamburrelli, Vincenzopio
    Ferranti, Francesco
    Antonini, Giulio
    Cristina, Saverio
    Dhaene, Tom
    Knockaert, Luc
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 2598 - 2601
  • [10] Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case
    Fernandez-Nieto, Enrique D.
    Gallardo, Jose M.
    Vigneaux, Paul
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 264 : 55 - 90