Weighted upper metric mean dimension for amenable group actions

被引:5
|
作者
Tang, Dingxuan [1 ]
Wu, Haiyan [1 ]
Li, Zhiming [1 ]
机构
[1] Northwest Univ, Sch Math, Xian, Shaanxi, Peoples R China
来源
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
Weighted upper mean dimension; variational principle; amenable group; pseudo-orbits; TOPOLOGICAL DIMENSION;
D O I
10.1080/14689367.2019.1709047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate the notions of weighted upper metric mean dimensions and weighted upper measure-theoretic mean dimensions for amenable group actions. In particular, a variational principle for amenable group actions is presented. We also define weighted upper metric mean dimensions with respect to pseudo-orbits and establish their relation to weighted upper metric mean dimensions.
引用
收藏
页码:382 / 397
页数:16
相关论文
共 50 条
  • [21] Amenable upper mean dimensions
    Li, Zhiming
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [22] Bowen's equations for upper metric mean dimension with potential
    Yang, Rui
    Chen, Ercai
    Zhou, Xiaoyao
    NONLINEARITY, 2022, 35 (09) : 4905 - 4938
  • [23] Multiorders in amenable group actions
    Downarowicz, Tomasz
    Oprocha, Piotr
    Wiecek, Mateusz
    Zhang, Guohua
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 25 - 65
  • [24] Amenable actions preserving a locally finite metric
    Anantharaman-Delaroche, Claire
    EXPOSITIONES MATHEMATICAE, 2018, 36 (3-4) : 278 - 301
  • [25] Local Entropy, Metric Entropy and Topological Entropy for Countable Discrete Amenable Group Actions
    Ren, Xiankun
    Sun, Wenxiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [26] UPPER CAPACITY ENTROPY AND PACKING ENTROPY OF SATURATED SETS FOR AMENABLE GROUP ACTIONS
    Zhang, Wenda
    Ren, Xiankun
    Zhang, Yiwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (07) : 2812 - 2834
  • [27] Variational principles for amenable metric mean dimensions
    Chen, Ercai
    Dou, Dou
    Zheng, Dongmei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 319 : 41 - 79
  • [28] Amenable groups, mean topological dimension and subshifts
    Krieger, Fabrice
    GEOMETRIAE DEDICATA, 2006, 122 (01) : 15 - 31
  • [29] Metric Mean Dimension of Free Semigroup Actions for Non-Compact Sets
    Tang, Yanjie
    Ye, Xiaojiang
    Ma, Dongkui
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2024, 30 (02)
  • [30] Sequence entropy for amenable group actions
    Liu, Chunlin
    Yan, Kesong
    PHYSICA SCRIPTA, 2023, 98 (12)