Adaptive non-convex total variation regularisation for image restoration

被引:14
|
作者
Fu, S. [1 ,2 ]
Zhang, C. [1 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1049/el.2010.0027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An adaptive non-convex total variation regularisation is proposed for blind image restoration. A flux corrected transport (FCT) technique is used to obtain a stable numerical scheme, where a spatially varying constraint allows a better restoration of image edges and fine detail. Finally, its advantages are shown in deblurring edges, denoising and restoring fine details of image simultaneously in experiments.
引用
收藏
页码:907 / U56
页数:2
相关论文
共 50 条
  • [31] Underwater Image Restoration via Non-Convex Non-Smooth Variation and Thermal Exchange Optimization
    Jiao, Qingliang
    Liu, Ming
    Li, Pengyu
    Dong, Liquan
    Hui, Mei
    Kong, Lingqin
    Zhao, Yuejin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (06)
  • [32] Performance analysis of the convex non-convex total variation denoising model
    Zhu, Yating
    Zeng, Zixun
    Chen, Zhong
    Zhou, Deqiang
    Zou, Jian
    AIMS MATHEMATICS, 2024, 9 (10): : 29031 - 29052
  • [33] Non-convex and non-smooth variational decomposition for image restoration
    Tang Liming
    Zhang Honglu
    He Chuanjiang
    Fang Zhuang
    APPLIED MATHEMATICAL MODELLING, 2019, 69 : 355 - 377
  • [34] Hyperspectral fruit image restoration using non-convex optimization
    Shanthini, K. S.
    George, Sudhish N.
    George, Sony
    Devassy, Binu Melit
    JOURNAL OF FOOD ENGINEERING, 2023, 358
  • [35] A new non-convex sparse optimization method for image restoration
    Peng Wu
    Dequan Li
    Signal, Image and Video Processing, 2023, 17 : 3829 - 3836
  • [36] A new non-convex sparse optimization method for image restoration
    Wu, Peng
    Li, Dequan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (07) : 3829 - 3836
  • [37] Non-convex, non-local functionals converging to the total variation
    Brezis, Haim
    Hoai-Minh Nguyen
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 24 - 27
  • [38] Image denoising algorithm based on boosting high order non-convex total variation model
    Liu P.
    Jia J.
    Chen L.
    An Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (03): : 557 - 567
  • [39] Convex 1-D Total Variation Denoising with Non-convex Regularization
    Selesnick, Ivan W.
    Parekh, Ankit
    Bayram, Ilker
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (02) : 141 - 144
  • [40] Convex non-convex image segmentation
    Raymond Chan
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Numerische Mathematik, 2018, 138 : 635 - 680