Thermal resistance network model for heat conduction of amorphous polymers

被引:27
|
作者
Zhou, Jun [1 ]
Xi, Qing [1 ]
He, Jixiong [2 ]
Xu, Xiangfan [1 ]
Nakayama, Tsuneyoshi [1 ,3 ]
Wang, Yuanyuan [4 ]
Liu, Jun [2 ]
机构
[1] Tongji Univ, Ctr Phonon & Thermal Energy Sci, China EU Joint Lab Nanophonon, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[2] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
[3] Hokkaido Univ, Dept Appl Phys, Sapporo, Hokkaido 0600826, Japan
[4] Shanghai Polytech Univ, Sch Environm & Mat Engn, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CROSS-LINKED POLYMERS; TRANSITION;
D O I
10.1103/PhysRevMaterials.4.015601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal conductivities (TCs) of the vast majority of amorphous polymers are in a very narrow range, 0.1-0.5 W m(-1) K-1, although single polymer chains possess TCs of orders of magnitude higher. The chemical structure of polymer chains plays an important role in determining the TC of bulk polymers. We propose a thermal resistance network (TRN) model for the TC in amorphous polymers taking into account the chemical structure of molecular chains. Our model elucidates the physical origin of the low TC universally observed in amorphous polymers with various chemical structures. The empirical formulas of the pressure and temperature dependence of TC can be successfully reproduced not only in solid polymers but also in polymer melts. We further quantitatively explain the anisotropic TC in oriented polymers.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Prediction of Equivalent Thermal Conduction Resistance of Printed Circuit Heat Exchangers
    SHI Haoning
    CHANG Hongliang
    MA Ting
    WANG Qiuwang
    Journal of Thermal Science, 2022, 31 (06) : 2281 - 2292
  • [22] Prediction of Equivalent Thermal Conduction Resistance of Printed Circuit Heat Exchangers
    Haoning Shi
    Hongliang Chang
    Ting Ma
    Qiuwang Wang
    Journal of Thermal Science, 2022, 31 : 2281 - 2292
  • [23] An Experimental Study on Heat Conduction and Thermal Contact Resistance for the AlN Flake
    Chou, Huann-Ming
    Wang, Jin-Chi
    Chang, Yuh-Ping
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2013, 2013
  • [24] Prediction of Equivalent Thermal Conduction Resistance of Printed Circuit Heat Exchangers
    Shi Haoning
    Chang Hongliang
    Ma Ting
    Wang Qiuwang
    JOURNAL OF THERMAL SCIENCE, 2022, 31 (06) : 2281 - 2292
  • [25] Thermal shock resistance of solids associated with hyperbolic heat conduction theory
    Wang, B. L.
    Li, J. E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153):
  • [26] Understanding heat conduction in oriented polymers
    Pietralla, M.
    NATO Advanced Study Institutes Series, Series B: Physics, 1991, 258
  • [27] Effect of thermal losses on the microscopic hyperbolic heat conduction model
    M. Al-Nimr
    B. Abu-Hijleh
    M. Hader
    Heat and Mass Transfer, 2003, 39 : 201 - 207
  • [28] Effect of thermal losses on the microscopic hyperbolic heat conduction model
    Al-Nimr, MA
    Abu-Hijleh, BA
    Hader, MA
    HEAT AND MASS TRANSFER, 2003, 39 (03) : 201 - 207
  • [29] Usage of the Heat Conduction Model for the Experimental Determination of Thermal Diffusivity
    Zecova, Monika
    Terpak, Jan
    Dorcak, L'ubomir
    PROCEEDINGS OF THE 2013 14TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2013, : 436 - 441
  • [30] Application of hyperbolic heat conduction model in thermal lens spectroscopy
    Coimbra, Igor Jose do Carmo
    da Silva, Luiz Fernando Lobato
    Moreira, Sanclayton Geraldo Carneiro
    Estumano, Diego Cardoso
    Macedo, Emanuel N.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (05) : 785 - 802