Impact fragmentation of metal nanoparticle agglomerates

被引:48
|
作者
Seipenbusch, Martin
Toneva, Petya
Peukert, Wolfgang
Weber, Alfred P.
机构
[1] Univ Karlsruhe, Inst Mech Verfahrenstech & Mech, D-76131 Karlsruhe, Germany
[2] Univ Erlangen Nurnberg, Lehrstuhl Feststoff & Grenzflachenverfahrenstech, D-91058 Erlangen, Germany
[3] Tech Univ Clausthal, Inst Mech Verfahrenstech, D-38678 Clausthal Zellerfeld, Germany
关键词
deagglomeration; diffusional agglomeration; nanoparticle agglomerates; Weibull statistics;
D O I
10.1002/ppsc.200601089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Deagglomeration experiments were performed with agglomerates of nanoparticles of Ni and Pt. The fragmentation was induced by high velocity impaction of the agglomerates in a single-stage low pressure impactor and the fragmentation patterns were evaluated by TEM analysis. Weibull statistics are employed for a quantitative description of the fragmentation behavior. This study shows that for well-defined interparticle contacts, the impact fragmentation technique combined with the evaluation according to Weibull statistics, allows the recovery of the expected size dependencies. For Pt and Ag, the adhesion force particle size dependency was dominated by van der Waals forces. In contrast, the adhesion force between Ni particles in the size range from 12-28 nm revealed a much stronger increase with particle size. This phenomenon may be attributed to permanent magnetic dipole moments which are also reflected in the chain-like shape of the agglomerates. For nanoparticle agglomerates with less well-defined contacts, such as those in industrial environments, the method provides a promising application to reveal the bond strength and cohesiveness of nanoparticle powders.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 50 条
  • [21] Magnetization State in Magnetic Nanoparticle Agglomerates
    Bregar, Vladimir B.
    Pavlin, Mojca
    Znidarsic, Andrej
    8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS, 2010, 1311 : 59 - 64
  • [22] Interparticle forces in silica nanoparticle agglomerates
    M. Seipenbusch
    S. Rothenbacher
    M. Kirchhoff
    H.-J. Schmid
    G. Kasper
    A. P. Weber
    Journal of Nanoparticle Research, 2010, 12 : 2037 - 2044
  • [23] Rebound behavior of nanoparticle-agglomerates
    Gensch, M.
    Weber, A. P.
    ADVANCED POWDER TECHNOLOGY, 2017, 28 (08) : 1930 - 1942
  • [24] Sound assisted fluidization of nanoparticle agglomerates
    Zhu, C
    Liu, GL
    Yu, Q
    Pfeffer, R
    Dave, RN
    Nam, CH
    POWDER TECHNOLOGY, 2004, 141 (1-2) : 119 - 123
  • [25] Characterization of the Stratified Morphology of Nanoparticle Agglomerates
    Fabre, Andrea
    Steur, Teun
    Bouwman, Wim G.
    Kreutzer, Michiel T.
    van Ommen, J. Ruud
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (36): : 20446 - 20453
  • [26] Fluidization of Nanoparticle Agglomerates at Elevated Temperatures
    Esmailpour, Ali Asghar
    Mostoufi, Navid
    Zarghami, Reza
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (46) : 13955 - 13969
  • [27] Gas fluidization characteristics of nanoparticle agglomerates
    Zhu, C
    Yu, Q
    Dave, RN
    Pfeffer, R
    AICHE JOURNAL, 2005, 51 (02) : 426 - 439
  • [28] Impact fragmentation of a brittle metal compact
    Tang, Megan
    Hooper, Joseph P.
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (17)
  • [29] Fragmentation of wet agglomerates after normal impact with a flat surface: Experimental study and DEM simulation
    Cai, Jialiang
    Ma, Jiliang
    Zhang, Zuyang
    Chen, Xiaoping
    Liu, Daoyin
    Liang, Cai
    CHEMICAL ENGINEERING SCIENCE, 2025, 307
  • [30] Measurement of inherent material density of nanoparticle agglomerates
    Park, K
    Kittelson, DB
    Zachariah, MR
    McMurry, PH
    JOURNAL OF NANOPARTICLE RESEARCH, 2004, 6 (2-3) : 267 - 272