The Moore-Penrose inverse of a partitioned nonnegative definite matrix

被引:6
|
作者
Gross, J [1 ]
机构
[1] Univ Dortmund, Dept Stat, D-44221 Dortmund, Germany
关键词
Banachiewicz inversion formula; generalized inverse; Lowner partial ordering; rank; Schur complement;
D O I
10.1016/S0024-3795(99)00073-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider an arbitrary symmetric nonnegative definite matrix A and its Moore-Penrose inverse A(+), partitioned, respectively as A = ((E)(F') (F)(H)) and A(+) = ((Gt)(G2)(G2')(G4)). Explicit expressions for G(1), G(2) and G(4) in terms of E, F and H are given. Moreover, it is proved that the generalized Schur complement (A(+)/G(4)) = G(1) - G(2)G(4)(+)G'(2) is always below the Moore-Penrose inverse (A/H)(+) of the generalized Schur complement (A/H) = E - FH+F' with respect to the Lowner partial ordering. (C) 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A09.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [11] THE MOORE-PENROSE INVERSE OF A SYMMETRICAL MATRIX
    TRENKLER, G
    MAGNUS, JR
    ECONOMETRIC THEORY, 1992, 8 (04) : 585 - 586
  • [12] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Cui, Chong
    Wang, Hongxing
    Wei, Yimin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4163 - 4186
  • [13] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Chong Cui
    Hongxing Wang
    Yimin Wei
    Journal of Applied Mathematics and Computing, 2023, 69 : 4163 - 4186
  • [14] Weighted Moore-Penrose inverse of a Boolean matrix
    Bapat, RB
    Jain, SK
    Pati, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 255 : 267 - 279
  • [15] The density of the Moore-Penrose inverse of a random matrix
    Neudecker, H
    Liu, SZ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 237 : 123 - 126
  • [16] The Weighted Moore-Penrose Inverse of a Partitioned Morphism in a Preadditive Category
    Liao, Zuhua
    Liao, Zhenyu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 395 - 399
  • [17] Moore-Penrose inverse of an invertible infinite matrix
    Sivakumar, KC
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (01): : 71 - 77
  • [18] The property of Moore-Penrose generalized inverse matrix
    Tian Baoguang
    Wang Nannan
    Xia Lei
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 289 - 292
  • [19] The Moore-Penrose generalized inverse of a symmetric matrix
    Puntanen, S
    Styan, GPH
    ECONOMETRIC THEORY, 1996, 12 (04) : 748 - 749
  • [20] Moore-Penrose inverse of a Euclidean distance matrix
    Kurata, Hiroshi
    Bapat, Ravindra B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 472 : 106 - 117