Unsupervised improvement of visual detectors using co-training

被引:0
|
作者
Levin, A [1 ]
Viola, P [1 ]
Freund, Y [1 ]
机构
[1] Hebrew Univ Jerusalem, Sch CS & Eng, IL-91904 Jerusalem, Israel
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One significant challenge in the construction of visual detection systems is the acquisition of sufficient labeled data. This paper describes a new technique for training visual detectors which requires only a small quantity of labeled data, and then uses unlabeled data to improve performance over time. Unsupervised improvement is based on the co-training framework of Blum and Mitchell, in which two disparate classifiers are trained simultaneously. Unlabeled examples which are confidently labeled by one classifier are added, with labels, to the training set of the other classifier Experiments are presented on the realistic task of automobile detection in roadway surveillance video. In this application, co-training reduces the false positive rate by a factor of 2 to 11 from the classifier trained with labeled data alone.
引用
收藏
页码:626 / 633
页数:8
相关论文
共 50 条
  • [21] Using clustering and co-training to boost classification performance
    Kyriakopoulou, Antonia
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL II, PROCEEDINGS, 2007, : 325 - 330
  • [22] Web classification of conceptual entities using co-training
    Sun, Aixin
    Liu, Ying
    Lim, Ee-Peng
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14367 - 14375
  • [23] A review of research on co-training
    Ning, Xin
    Wang, Xinran
    Xu, Shaohui
    Cai, Weiwei
    Zhang, Liping
    Yu, Lina
    Li, Wenfa
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (18):
  • [24] On Co-training Style Algorithms
    Dong, Cailing
    Yin, Yilong
    Guo, Xinjian
    Yang, Gongping
    Zhou, Guangtong
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 7, PROCEEDINGS, 2008, : 196 - 201
  • [25] Co-training with Credal Models
    Soullard, Yann
    Destercke, Sebastien
    Thouvenin, Indira
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 92 - 104
  • [26] CO-TRAINING - A SYNERGISTIC OUTCOME
    MILLER, GV
    WILSON, PG
    TRAINING AND DEVELOPMENT JOURNAL, 1982, 36 (09): : 94 - 100
  • [27] DCPE co-training for classification
    Xu, Jin
    He, Haibo
    Man, Hong
    NEUROCOMPUTING, 2012, 86 : 75 - 85
  • [28] LAPLACIAN REGULARIZED CO-TRAINING
    Li Yang
    Liu Weifeng
    Wang Yanjiang
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 1408 - 1412
  • [29] CO-TRAINING - COLLABORATIVE MODEL
    CHADBOURNE, JW
    STACKOSULLIVAN, D
    MAHONEY, JT
    PERSONNEL AND GUIDANCE JOURNAL, 1979, 57 (10): : 544 - 546
  • [30] Supervised learning and Co-training
    Darnstaedt, Malte
    Simon, Hans Ulrich
    Szoerenyi, Balazs
    THEORETICAL COMPUTER SCIENCE, 2014, 519 : 68 - 87