Homoclinic chaos in a pair of parametrically-driven coupled SQUIDs

被引:4
|
作者
Agaoglou, M. [1 ]
Rothos, V. M. [1 ]
Susanto, H. [2 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Engn, Dept Mech Engn, Thessaloniki 54124, Greece
[2] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, Essex, England
关键词
ORBITS;
D O I
10.1088/1742-6596/574/1/012027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An rf superconducting quantum interference device (SQUID) consists of a superconducting ring interrupted by a Josephson junction (JJ). When driven by an alternating magnetic field, the induced supercurrents around the ring are determined by the JJ through the celebrated Josephson relations. This system exhibits rich nonlinear behavior, including chaotic effects. We study the dynamics of a pair of parametrically-driven coupled SQUIDs arranged in series. We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using high-dimensional Melnikov theory, we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Silnikov orbits, indicating a loss of integrability and the existence of chaos.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Reshaping-induced control of chaos and crisis phenomena in a damped, parametrically driven pendulum
    Chacon, R.
    Garcia-Hoz, A. Martinez
    Martinez, J. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (02): : 625 - 630
  • [42] Taming Spatiotemporal Chaos by Impurities in the Parametrically Driven Damped Nonlinear Schrödinger Equation
    N V Alexeeva
    I V Barashenkov
    G P Tsironis
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 5 - 12
  • [43] The smallest chimera: Periodicity and chaos in a pair of coupled chemical oscillators
    Awal, Naziru M.
    Bullara, Domenico
    Epstein, Irving R.
    CHAOS, 2019, 29 (01)
  • [44] Dissipative entanglement generation between two qubits parametrically driven and coupled to a resonator
    Luciano Gallardo, Sebastian
    Dominguez, Daniel
    Jose Sanchez, Maria
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [45] Stability of a parametrically driven, coupled oscillator system: An auxiliary function method approach
    McMillan, Andrew N.
    Young, Yin Lu
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (15)
  • [46] From prethermalization to chaos in periodically driven coupled rotors
    Sadia, Yonathan
    Dalla Torre, Emanuele G.
    Rajak, Atanu
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [47] Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators
    Nataliya V. Stankevich
    Anton Dvorak
    Vladimir Astakhov
    Patrycja Jaros
    Marcin Kapitaniak
    Przemysław Perlikowski
    Tomasz Kapitaniak
    Regular and Chaotic Dynamics, 2018, 23 : 120 - 126
  • [48] Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators
    Stankevich, Nataliya V.
    Dvorak, Anton
    Astakhov, Vladimir
    Jaros, Patrycja
    Kapitaniak, Marcin
    Perlikowski, Przemyslaw
    Kapitaniak, Tomasz
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (01): : 120 - 126
  • [49] Homoclinic bifurcation and chaos in coupled simple pendulum and harmonic oscillator under bounded noise excitation
    Zhu, WQ
    Liu, ZH
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (01): : 233 - 243
  • [50] Homoclinic-Heteroclinic Bifurcations and Chaos in a Coupled SD Oscillator Subjected to Gaussian Colored Noise
    Zhou, Biliu
    Jin, Yanfei
    Xu, Huidong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (16):