Homoclinic chaos in a pair of parametrically-driven coupled SQUIDs

被引:4
|
作者
Agaoglou, M. [1 ]
Rothos, V. M. [1 ]
Susanto, H. [2 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Engn, Dept Mech Engn, Thessaloniki 54124, Greece
[2] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, Essex, England
关键词
ORBITS;
D O I
10.1088/1742-6596/574/1/012027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An rf superconducting quantum interference device (SQUID) consists of a superconducting ring interrupted by a Josephson junction (JJ). When driven by an alternating magnetic field, the induced supercurrents around the ring are determined by the JJ through the celebrated Josephson relations. This system exhibits rich nonlinear behavior, including chaotic effects. We study the dynamics of a pair of parametrically-driven coupled SQUIDs arranged in series. We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using high-dimensional Melnikov theory, we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Silnikov orbits, indicating a loss of integrability and the existence of chaos.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators
    Kenig, Eyal
    Tsarin, Yuriy A.
    Lifshitz, Ron
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [2] Homoclinic chaos in coupled SQUIDs
    Agaoglou, M.
    Rothos, V. M.
    Susanto, H.
    CHAOS SOLITONS & FRACTALS, 2017, 99 : 133 - 140
  • [3] Collective rotation in coupled parametrically-driven pendulums
    Kawai, R
    Williams, N
    Rast, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (09): : 1201 - 1210
  • [4] Squeezing of thermal noise in a parametrically-driven oscillator
    Batista, Adriano A.
    DYNAMIC DAYS SOUTH AMERICA 2010: INTERNATIONAL CONFERENCE ON CHAOS AND NONLINEAR DYNAMICS, 2011, 285
  • [5] Universal triangular spectra in parametrically-driven systems
    Akhmediev, Nail
    Ankiewicz, Adrian
    Soto-Crespo, J. M.
    Dudley, John M.
    PHYSICS LETTERS A, 2011, 375 (03) : 775 - 779
  • [6] Critical quantum geometric tensors of parametrically-driven nonlinear resonators
    Zhang, Hao-long
    Lu, Jia-hao
    Chen, Ken
    Yu, Xue-jia
    Wu, Fan
    Yang, Zhen-biao
    Zheng, Shi-biao
    OPTICS EXPRESS, 2024, 32 (13): : 22566 - 22577
  • [7] Homoclinic and spatiotemporal chaos in parametrically excited surface waves
    Umeki, M
    NONLINEAR ACOUSTICS IN PERSPECTIVE, 1996, : 424 - 427
  • [8] Dynamics of soliton-soliton interactions in parametrically-driven systems
    Wang, XL
    CHINESE PHYSICS LETTERS, 1997, 14 (02): : 109 - 112
  • [9] HOMOCLINIC BIFURCATIONS IN SIMPLE PARAMETRICALLY DRIVEN SYSTEMS
    BRUHN, B
    ANNALEN DER PHYSIK, 1989, 46 (05) : 367 - 375
  • [10] Quantum metric and metrology with parametrically-driven Tavis-Cummings models
    Lu, Jia-hao
    Han, Pei-rong
    Ning, Wen
    Zhu, Xin
    Wu, Fan
    Shen, Li-tuo
    Yang, Zhen-biao
    Zheng, Shi-biao
    OPTICS EXPRESS, 2023, 31 (25) : 41669 - 41683