Prediction of clinically significant prostate cancer with a multimodal MRI-based radiomics nomogram

被引:10
|
作者
Jing, Guodong [1 ]
Xing, Pengyi [2 ]
Li, Zhihui [3 ]
Ma, Xiaolu [1 ]
Lu, Haidi [1 ]
Shao, Chengwei [1 ]
Lu, Yong [4 ]
Lu, Jianping [1 ]
Shen, Fu [1 ]
机构
[1] Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
[2] 989th Hosp Joint Logist Support Force Chinese Peop, Dept Radiol, Luoyang, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Radiol, Luwan Branch,Sch Med, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Radiol, Sch Med, Shanghai, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2022年 / 12卷
关键词
magnetic resonance imaging; nomogram; radiomics; prostate cancer; clinically significant; DIAGNOSIS; IMAGES;
D O I
10.3389/fonc.2022.918830
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectiveTo develop and validate a multimodal MRI-based radiomics nomogram for predicting clinically significant prostate cancer (CS-PCa). MethodsPatients who underwent radical prostatectomy with pre-biopsy prostate MRI in three different centers were assessed retrospectively. Totally 141 and 60 cases were included in the training and test sets in cohort 1, respectively. Then, 66 and 122 cases were enrolled in cohorts 2 and 3, as external validation sets 1 and 2, respectively. Two different manual segmentation methods were established, including lesion segmentation and whole prostate segmentation on T2WI and DWI scans, respectively. Radiomics features were obtained from the different segmentation methods and selected to construct a radiomics signature. The final nomogram was employed for assessing CS-PCa, combining radiomics signature and PI-RADS. Diagnostic performance was determined by receiver operating characteristic (ROC) curve analysis, net reclassification improvement (NRI) and decision curve analysis (DCA). ResultsTen features associated with CS-PCa were selected from the model integrating whole prostate (T2WI) + lesion (DWI) for radiomics signature development. The nomogram that combined the radiomics signature with PI-RADS outperformed the subjective evaluation alone according to ROC analysis in all datasets (all p<0.05). NRI and DCA confirmed that the developed nomogram had an improved performance in predicting CS-PCa. ConclusionsThe established nomogram combining a biparametric MRI-based radiomics signature and PI-RADS could be utilized for noninvasive and accurate prediction of CS-PCa.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] MRI-based Radiomics nomogram to detect primary rectal cancer with synchronous liver metastases
    Zhenyu Shu
    Songhua Fang
    Zhongxiang Ding
    Dewang Mao
    Rui Cai
    Yuanjun Chen
    Peipei Pang
    Xiangyang Gong
    Scientific Reports, 9
  • [32] Editorial for "Multiparametric MRI-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer"
    Shiradkar, Rakesh
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (04) : 1231 - 1232
  • [33] Development of a novel nomogram for predicting clinically significant prostate cancer with the prostate health index and multiparametric MRI
    Mo, Li-Cai
    Zhang, Xian-Jun
    Zheng, Hai-Hong
    Huang, Xiao-peng
    Zheng, Lin
    Zhou, Zhi-Rui
    Wang, Jia-Jia
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [34] MRI-based radiomics for prediction of extraprostatic extension of prostate cancer: a systematic review and meta-analysis
    Jing Wen
    Wei Liu
    Yilan Zhang
    Xiaocui Shen
    La radiologia medica, 2024, 129 : 702 - 711
  • [35] MRI-based radiomics for prediction of biochemical recurrence in prostate cancer: a systematic review and meta-analysis
    Salimi, Mohsen
    Vadipour, Pouria
    Houshi, Shakiba
    Yazdanpanah, Fereshteh
    Seifi, Sharareh
    ABDOMINAL RADIOLOGY, 2025,
  • [36] MRI-based radiomics for prediction of extraprostatic extension of prostate cancer: a systematic review and meta-analysis
    Wen, Jing
    Liu, Wei
    Zhang, Yilan
    Shen, Xiaocui
    RADIOLOGIA MEDICA, 2024, 129 (05): : 702 - 711
  • [37] MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
    Li, Yang
    Liu, Yang
    Yin, Ping
    Hao, Chuanxi
    Sun, Chao
    Chen, Lei
    Wang, Sicong
    Hong, Nan
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [38] Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram
    Jingyu Zhong
    Chengxiu Zhang
    Yangfan Hu
    Jing Zhang
    Yun Liu
    Liping Si
    Yue Xing
    Defang Ding
    Jia Geng
    Qiong Jiao
    Huizhen Zhang
    Guang Yang
    Weiwu Yao
    European Radiology, 2022, 32 : 6196 - 6206
  • [39] Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram
    Zhong, Jingyu
    Zhang, Chengxiu
    Hu, Yangfan
    Zhang, Jing
    Liu, Yun
    Si, Liping
    Xing, Yue
    Ding, Defang
    Geng, Jia
    Jiao, Qiong
    Zhang, Huizhen
    Yang, Guang
    Yao, Weiwu
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6196 - 6206
  • [40] MRI-based radiomics for preoperative prediction of recurrence and metastasis in rectal cancer
    Xiuzhen Yao
    Xiandi Zhu
    Shuitang Deng
    Sizheng Zhu
    Guoqun Mao
    Jinwen Hu
    Wenjie Xu
    Sikai Wu
    Weiqun Ao
    Abdominal Radiology, 2024, 49 : 1306 - 1319