SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM

被引:20
|
作者
Guo, Chun-Hua [1 ]
Lin, Wen-Wei [2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
palindromic quadratic eigenvalue problem; nonlinear matrix equation; stabilizing solution; structure-preserving; doubling algorithm; MATRIX EQUATION; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; FAST TRAINS; POLYNOMIALS; VIBRATION;
D O I
10.1137/090763196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In studying the vibration of fast trains, we encounter a palindromic quadratic eigen-value problem (QEP) (lambda(2)A(T)+lambda Q+A)z = 0, where A, Q is an element of C(nxn) and Q(T) = Q. Moreover, the matrix Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upper-right corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach, one typically starts with deflating these known eigenvalues for the sake of efficiency. However, this initial deflation process involves the inverses of two potentially ill-conditioned matrices. As a result, large error might be introduced into the data for the reduced problem. In this paper we propose using the solvent approach directly on the original QEP, without any deflation process. We apply a structure-preserving doubling algorithm to compute the stabilizing solution of the matrix equation X + A(T)X(-1)A = Q, whose existence is guaranteed by a result on the Wiener-Hopf factorization of rational matrix functions associated with semi-infinite block Toeplitz matrices and a generalization of Bendixson's theorem to bounded linear operators on Hilbert spaces. The doubling algorithm is shown to be well defined and quadratically convergent. The complexity of the doubling algorithm is drastically reduced by using the Sherman-Morrison-Woodbury formula and the special structures of the problem. Once the stabilizing solution is obtained, all nonzero finite eigenvalues of the QEP can be found efficiently and with the automatic reciprocal relationship, while the known eigenvalues at zero or infinity remain intact.
引用
收藏
页码:2784 / 2801
页数:18
相关论文
共 50 条
  • [21] A structure-preserving doubling algorithm for the square root of regular M-matrix
    Wang, Zehua
    Guan, Jinrui
    Zubair, Ahmed
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (09): : 5306 - 5320
  • [22] A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations
    Chu, EKW
    Fan, HY
    Lin, WW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 396 : 55 - 80
  • [23] STRUCTURE-PRESERVING ALGORITHMS FOR PALINDROMIC QUADRATIC EIGENVALUE PROBLEMS ARISING FROM VIBRATION OF FAST TRAINS
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Qian, Jiang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1566 - 1592
  • [24] Structure-preserving numerical algorithm for solving discrete-time LMI and DARS
    Stefanovski, Jovan
    SYSTEMS & CONTROL LETTERS, 2011, 60 (03) : 205 - 210
  • [25] A modified structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equations from transport theory
    Guo, Pei-Chang
    Guo, Xiao-Xia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 : 213 - 220
  • [26] A generalized structure-preserving doubling algorithm for generalized discrete-time algebraic Riccati equations
    Hwang, TM
    Chu, EKW
    Lin, WW
    INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (14) : 1063 - 1075
  • [27] Structure-Preserving Technique in the Block SS-Hankel Method for Solving Hermitian Generalized Eigenvalue Problems
    Imakura, Akira
    Futamura, Yasunori
    Sakurai, Tetsuya
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I, 2018, 10777 : 600 - 611
  • [28] A new structure-preserving method for quaternion Hermitian eigenvalue problems
    Jia, Zhigang
    Wei, Musheng
    Ling, Sitao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 12 - 24
  • [29] Structure-preserving eigenvalue solvers for robust stability and controllability estimates
    Kressner, Daniel
    Mengi, Emre
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5174 - +
  • [30] Structure preserving parallel algorithms for solving the Bethe-Salpeter eigenvalue problem
    Shao, Meiyue
    da Jornada, Felipe H.
    Yang, Chao
    Deslippe, Jack
    Louie, Steven G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 488 : 148 - 167