A NEW CLASS OF POSITIVE SEMI-DEFINITE TENSORS

被引:1
|
作者
Xu, Yi [1 ]
Liu, Jinjie [2 ]
Qi, Liqun [2 ]
机构
[1] Southeast Univ, Math Dept, 2 Sipailou, Nanjing 210096, Jiangsu, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Positive (semi-)definite tensor; completely positive tensor; H-eigenvalue; MO-tensor; MO-like tensor; Sup-MO value; EIGENVALUES;
D O I
10.3934/jimo.2018186
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential MO tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 50 条
  • [1] Basic Positive Semi-Definite Hankel Tensors
    Gu, Lejia
    Qi, Liqun
    MINIMAX THEORY AND ITS APPLICATIONS, 2020, 5 (01): : 33 - 46
  • [2] On the positive semi-definite pth roots of positive semi-definite doubly stochastic matrices
    Nader, Rafic
    Mourad, Bassam
    Abbas, Hassan
    Bretto, Alain
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 2836 - 2855
  • [3] Products of positive semi-definite matrices
    Cui, Jianlian
    Li, Chi-Kwong
    Sze, Nung-Sing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 528 : 17 - 24
  • [4] Positive Semi-definite Embedding for Dimensionality Reduction and
    Fanuel, Michael
    Aspeel, Antoine
    Delvenne, Jean -Charles
    Suykens, Johan A. K.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (01): : 153 - 178
  • [5] ON HADAMARD POWERS OF POSITIVE SEMI-DEFINITE MATRICES
    Baslingker, Jnaneshwar
    Dan, Biltu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1395 - 1401
  • [6] POSITIVE SEMI-DEFINITE MATRICES AS SUMS OF SQUARES
    DJOKOVIC, DZ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 14 (01) : 37 - 40
  • [7] Direct sums of positive semi-definite matrices
    Bourin, Jean-Christophe
    Lee, Bun-Young
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 463 : 273 - 281
  • [8] INVERSION OF A POSITIVE SEMI-DEFINITE SYMMETRIC MATRIX
    HEALY, MJR
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1968, 17 (02): : 198 - &
  • [9] Linear programming with positive semi-definite matrices
    Lasserre, JB
    MATHEMATICAL PROBLEMS IN ENGINEERING, 1996, 2 (06) : 499 - 522
  • [10] Measuring Sphericity in Positive Semi-Definite Matrices
    Ferreira, Dario
    Ferreira, Sandra S.
    AXIOMS, 2024, 13 (08)