A NEW CLASS OF POSITIVE SEMI-DEFINITE TENSORS

被引:1
|
作者
Xu, Yi [1 ]
Liu, Jinjie [2 ]
Qi, Liqun [2 ]
机构
[1] Southeast Univ, Math Dept, 2 Sipailou, Nanjing 210096, Jiangsu, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Positive (semi-)definite tensor; completely positive tensor; H-eigenvalue; MO-tensor; MO-like tensor; Sup-MO value; EIGENVALUES;
D O I
10.3934/jimo.2018186
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential MO tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 50 条
  • [22] FRACTIONAL HAMILTONIAN SYSTEMS WITH POSITIVE SEMI-DEFINITE MATRIX
    Torres, Cesar
    Zhang, Ziheng
    Mendez, Amado
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2436 - 2453
  • [23] GENERALIZED EIGENVALUE PROBLEMS WITH POSITIVE SEMI-DEFINITE MATRICES
    DELEEUW, J
    PSYCHOMETRIKA, 1982, 47 (01) : 87 - 93
  • [24] On deflation and singular symmetric positive semi-definite matrices
    Tang, J. M.
    Vuik, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 603 - 614
  • [25] Extrapolated positive definite and positive semi-definite splitting methods for solving non-Hermitian positive definite linear systems
    Raheleh Shokrpour
    Ghodrat Ebadi
    Applications of Mathematics, 2022, 67 : 319 - 340
  • [26] Image Set Classification by Symmetric Positive Semi-Definite Matrices
    Faraki, Masoud
    Harandi, Mehrtash T.
    Porikli, Fatih
    2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016), 2016,
  • [27] EXPONENTIAL CONVEXITY, POSITIVE SEMI-DEFINITE MATRICES AND FUNDAMENTAL INEQUALITIES
    Anwar, M.
    Jaksetic, J.
    Pecaric, J.
    Rehman, Atiq Ur
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2010, 4 (02): : 171 - 189
  • [28] Extrapolated Positive Definite and Positive Semi-Definite Splitting Methods for Solving Non-Hermitian Positive Definite Linear Systems
    Shokrpour, Raheleh
    Ebadi, Ghodrat
    APPLICATIONS OF MATHEMATICS, 2022, 67 (03) : 319 - 340
  • [29] The normal form of a positive semi-definite spatial stiffness matrix
    Roberts, RG
    ROBOTICS, AUTOMATION AND CONTROL AND MANUFACTURING: TRENDS, PRINCIPLES AND APPLICATIONS, 2002, 14 : 231 - 236
  • [30] Trace inequalities involving positive semi-definite block matrices
    Fu, Xiaohui
    Gumus, Mehmet
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5987 - 5994