Cosmology of Sub-MeV Dark Matter Freeze-In

被引:39
|
作者
Dvorkin, Cora [1 ]
Lin, Tongyan [2 ]
Schutz, Katelin [3 ,4 ,5 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[5] McGill Univ, McGill Space Inst, Montreal, PQ H3A 2T8, Canada
关键词
SELF-INTERACTIONS; CONSTRAINTS;
D O I
10.1103/PhysRevLett.127.111301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dark matter (DM) could be a relic of freeze-in through a light mediator, where the DM is produced by extremely feeble, IR-dominated processes in the thermal standard model plasma. In the simplest viable models with DM lighter than 1 MeV, the DM has a small effective electric charge and is born with a nonthermal phase-space distribution. This DM candidate would cause observable departures from standard cosmological evolution. In this work, we combine data from the cosmic microwave background (CMB), Lyman-alpha forest, quasar lensing, stellar streams, and Milky Way satellite abundances to set limits on freezein DM masses up to similar to 20 keV, with the exact constraint depending on whether the DM thennalizes in its own sector. We perform forecasts for the CMB-S4 experiment, the Hydrogen Epoch of Reionization Array, and the Vera Rubin Observatory, finding that freeze-in DM masses up to similar to 80 keV can be explored.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] First Germanium-Based Constraints on Sub-MeV Dark Matter with the EDELWEISS Experiment
    Arnaud, Q.
    Armengaud, E.
    Augier, C.
    Benoit, A.
    Berge, L.
    Billard, J.
    Broniatowski, A.
    Camus, P.
    Cazes, A.
    Chapellier, M.
    Charlieux, F.
    De Jesus, M.
    Dumoulin, L.
    Eitel, K.
    Elkhoury, E.
    Fillipini, J-B
    Filosofov, D.
    Gascon, J.
    Giuliani, A.
    Gros, M.
    Jin, Y.
    Juillard, A.
    Kleifges, M.
    Lattaud, H.
    Marnieros, S.
    Misiak, D.
    Navick, X-F
    Nones, C.
    Olivieri, E.
    Oriol, C.
    Pari, P.
    Paul, B.
    Poda, D.
    Rozov, S.
    Salagnac, T.
    Sanglard, V
    Siebenborn, B.
    Vagneron, L.
    Weber, M.
    Yakushev, E.
    Zolotarova, A.
    PHYSICAL REVIEW LETTERS, 2020, 125 (14)
  • [32] Dark matter direct detection is testing freeze-in
    Hambye, Thomas
    Tytgat, Michel H. G.
    Vandecasteele, Jerome
    Vanderheyden, Laurent
    PHYSICAL REVIEW D, 2018, 98 (07)
  • [33] Freeze-in and freeze-out of sterile neutrino dark matter
    Coy, Rupert
    Schmidt, Michael A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (08):
  • [34] Searching for sub-MeV boosted dark matter from xenon electron direct detection
    曹庆宏
    丁然
    向仟飞
    Chinese Physics C, 2021, (04) : 408 - 419
  • [35] Searching for sub-MeV boosted dark matter from xenon electron direct detection *
    Cao, Qing-Hong
    Ding, Ran
    Xiang, Qian-Fei
    CHINESE PHYSICS C, 2021, 45 (04)
  • [36] Dark Matter from freeze-in and its inhomogeneities
    Alessandro Strumia
    Journal of High Energy Physics, 2023
  • [37] Sterile neutrino dark matter from freeze-in
    Shakya, Bibhushan
    MODERN PHYSICS LETTERS A, 2016, 31 (06)
  • [38] Dark sink enhances the direct detection of freeze-in dark matter
    Bhattiprolu, Prudhvi N.
    McGehee, Robert
    Pierce, Aaron
    PHYSICAL REVIEW D, 2024, 110 (03)
  • [39] Dirac materials for sub-MeV dark matter detection: New targets and improved formalism
    Geilhufe, R. Matthias
    Kahlhoefer, Felix
    Winkler, Martin Wolfgang
    PHYSICAL REVIEW D, 2020, 101 (05)
  • [40] Freeze-in production of dark matter prior to early matter domination
    Allahverdi, Rouzbeh
    Osinski, Jacek K.
    PHYSICAL REVIEW D, 2020, 101 (06)