Impact of climate change on hydrological extremes in the Yangtze River Basin, China

被引:74
|
作者
Gu, Huanghe [1 ,2 ]
Yu, Zhongbo [1 ,3 ]
Wang, Guiling [4 ]
Wang, Jigan [2 ]
Ju, Qin [1 ]
Yang, Chuanguo [1 ]
Fan, Chuanhao [2 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
[2] Hohai Univ, Sch Business, Nanjing 210098, Jiangsu, Peoples R China
[3] Univ Nevada, Dept Geosci, Las Vegas, NV 89154 USA
[4] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Climate change; Hydrological extremes; RegCM4.0; VIC; Yangtze River Basin; WATER-RESOURCES; TEMPERATURE EXTREMES; BIAS CORRECTION; FUTURE CLIMATE; RECENT TRENDS; MODEL; STREAMFLOW; DISCHARGE; PRECIPITATION; VARIABILITY;
D O I
10.1007/s00477-014-0957-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The recent (1970-1999) and future (2070-2099) climates under the SRES A1B scenario, simulated by the regional climate model RegCM4.0 driven with lateral boundary conditions from the ECHAM5 general circulation model, are utilized to force a large-scale hydrological model for assessing the hydrological response to climate changes in the Yangtze River Basin, China. The variable infiltration capacity model (VIC) is utilized to simulate various hydrological components for examining the changes in streamflow at various locations throughout the Yangtze River Basin. In the end of the twenty-first century, most of the Yangtze River Basin stands out as "hotspots" of climate change in China, with an annual temperature increase of approximately 3.5 degrees C, an increase of annual precipitation in North and a decrease in South. Runoff in the upper reach of Yangtze River is projected to increase throughout the year in the future, especially in spring when the increase will be approximately 30 %. Runoff from the catchments in the northern part of Yangtze River will increase by approximately 10 %, whereas that in the southern part will decrease, especially in the dry season, following precipitation changes. The frequency of extreme floods at three mainstream stations (Cuntan, Yichang, and Datong) is projected to increase significantly. The original extreme floods with return periods of 50, 20, and 10 years will change into floods with return periods of no more than 20, 10, and 5 years. The projected increase in extreme floods will have significant impacts on water resources management and flood control systems in the Yangtze River Basin.
引用
收藏
页码:693 / 707
页数:15
相关论文
共 50 条
  • [21] Simulating the hydrological responses to climate change of the Xiang River basin, China
    Guoqing Wang
    Jianyun Zhang
    Thomas C. Pagano
    Yueping Xu
    Zhenxin Bao
    Yanli Liu
    Junliang Jin
    Cuishan Liu
    Xiaomeng Song
    Sicheng Wan
    Theoretical and Applied Climatology, 2016, 124 : 769 - 779
  • [22] Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China
    Xiaqing Feng
    Guangxin Zhang
    Xiongrui Yin
    Water Resources Management, 2011, 25 : 677 - 689
  • [23] Climate change impacts on concurrences of hydrological droughts and high temperature extremes in a semi-arid river basin of China
    Feng, Sifang
    Hao, Zengchao
    Zhang, Xuan
    Wu, Liyu
    Zhang, Yu
    Hao, Fanghua
    JOURNAL OF ARID ENVIRONMENTS, 2022, 202
  • [24] Climate change impact on river flow extremes in the Upper Blue Nile River basin
    Meresa, Hadush K.
    Gatachew, Mulusew T.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2019, 10 (04) : 759 - 781
  • [25] Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal
    Budhathoki, Aakanchya
    Babel, Mukand S.
    Shrestha, Sangam
    Meon, Gunter
    Kamalamma, Ambili G.
    ECOHYDROLOGY & HYDROBIOLOGY, 2021, 21 (01) : 79 - 95
  • [26] Climate change impact on hydrological processes in Lithuanian Nemunas river basin
    Kriauciuniene, Jurate
    Meilutyte-Barauskiene, Diana
    Rimkus, Egidijus
    Kazys, Justas
    Vincevicius, Ainis
    BALTICA, 2008, 21 (1-2): : 51 - 61
  • [27] Climate change impact on water balance and hydrological extremes in the Lower Mekong Basin: a case study of Prek Thnot River Basin, Cambodia
    Ich, Ilan
    Sok, Ty
    Kaing, Vinhteang
    Try, Sophal
    Chan, Ratboren
    Oeurng, Chantha
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (08) : 2911 - 2939
  • [28] Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia
    Kassaye, Shimelash Molla
    Tadesse, Tsegaye
    Tegegne, Getachew
    Hordofa, Aster Tesfaye
    ENVIRONMENTAL SYSTEMS RESEARCH, 2024, 13 (01)
  • [29] Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia
    Gradiyanto, Fernaldi
    Parmantoro, Priyo Nugroho
    Suharyanto
    WATER SCIENCE AND ENGINEERING, 2025, 18 (01) : 69 - 77
  • [30] EVALUATION OF CLIMATE CHANGE IMPACTS ON HYDROLOGICAL PROCESSES IN THE YANGTZE RIVER DELTA REGION, CHINA
    Liu, L.
    Li, R.
    Wang, Y. Z.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2017, 15 (03): : 1025 - 1040