Graded reasoning in n-valued Lukasiewicz propositional logic

被引:0
|
作者
Zhou, Hongjun [1 ]
Wang, Guojun [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
来源
关键词
D O I
10.1007/978-3-540-72575-6_62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the present paper we deal with graded reasoning in n-valued Lukasiewicz propositional logic L-n. Firstly we propose an approach to measure the extent to which a theory over L-n is consistent. Secondly, with the concept of consistency degrees of theories, we give several methods of graded reasoning in n-valued Lukasiewicz propositional logic L-n.
引用
收藏
页码:387 / +
页数:3
相关论文
共 50 条
  • [31] A Consequence Relation for Graded Inference within the Frame of Infinite-valued Lukasiewicz Logic
    Picado Muino, David
    FUNDAMENTA INFORMATICAE, 2013, 123 (01) : 77 - 95
  • [32] An Algebraic Construction of Moisil Operators in (n+1)-valued Lukasiewicz Propositional Calculus
    Figallo, Aldo V. y
    Figallo, Martin
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2013, 21 (1-2) : 131 - 145
  • [33] Graded consequence relations of lattice-valued propositional logic LP(X)
    Wang, XF
    Meng, D
    Xu, Y
    Qin, KY
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 5004 - 5009
  • [34] Reasoning processes in propositional logic
    Strannegård C.
    Ulfsbäcker S.
    Hedqvist D.
    Gärling T.
    Journal of Logic, Language and Information, 2010, 19 (3) : 283 - 314
  • [35] ON THE STRUCTURE OF N-VALUED LOGICS
    SWIFT, JD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (07) : 669 - 670
  • [36] Uncertainty reasoning based on lattice-valued propositional logic L6
    Chen, Shuwei
    Xu, Yang
    Ma, Jun
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 1419 - +
  • [37] On Lukasiewicz' Infinie-Valued Logic and FuzzyL
    Mattila, Jorma K.
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT IV, 2010, 6279 : 108 - 115
  • [38] α-Automated Reasoning Method Based on Lattice-Valued Propositional Logic LP(X)
    王伟
    徐扬
    王学芳
    Journal of Southwest Jiaotong University, 2002, (01) : 98 - 111
  • [39] The generalized truth degree of quantitative logic in the logic system Ln* (n-valued NM-logic system)
    Wu, Hongbo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) : 2587 - 2596
  • [40] n-valued quandles and associated bialgebras
    Bardakov, V. G.
    Kozlovskaya, T. A.
    Talalaev, D. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (01) : 1080 - 1096