Low-velocity impact response of fiber-metal laminates consisting of different standard GLARE grades

被引:11
|
作者
Bikakis, George S. E. [1 ]
Karaiskos, Evangelos [1 ]
Sideridis, Emilios P. [1 ]
机构
[1] Natl Tech Univ Athens, Strength Mat Lab, Athens, Greece
关键词
GLARE; fiber-metal laminate; low-velocity impact; circular plate; impact load; impact energy; LATERAL INDENTATION; CYLINDRICAL-SHELLS; STACKING-SEQUENCE; DYNAMIC-RESPONSE; PLATES; DAMAGE; RESISTANCE; BEHAVIORS; THICKNESS; FATIGUE;
D O I
10.1177/0731684416633770
中图分类号
TB33 [复合材料];
学科分类号
摘要
This article deals with the dynamic response of thin circular clamped GLARE (GLAss REinforced) fiber-metal laminates subjected to low-velocity impact by a lateral hemispherical impactor, striking at the center with constant kinetic energy. The laminates have equal total thickness and consist of GLARE 2A-3/2-0.4, GLARE 2A-4/3-0.238, GLARE 3-3/2-0.4, GLARE 4-3/2-0.317, and GLARE 5-3/2-0.233 standard grades. Three different plate diameters are considered for each GLARE grade. Their dynamic response is predicted by solving previously published differential equations of motion corresponding to a spring-mass modeling of the impact phenomenon. The obtained results are analyzed and compared in order to understand and evaluate the performance of the examined material grades along with the effect of different plate radius. With reference to the radius variation, it is found that it affects substantially the overall impact behavior of a GLARE plate. As far as the examined material grades are concerned, similarities and differences related with their impact behavior are recorded and a comparative evaluation is implemented. Characteristic variables associated with the low-velocity impact response of fiber-metal laminates are discussed and pertinent design recommendations are proposed.
引用
收藏
页码:1029 / 1040
页数:12
相关论文
共 50 条
  • [41] Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates
    Li, Lijun
    Sun, Lingyu
    Wang, Taikun
    Kang, Ning
    Cao, Wan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 84 : 995 - 1010
  • [42] Impact resistance of fiber-metal laminates: A review
    Sadighi, M.
    Alderliesten, R. C.
    Benedictus, R.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2012, 49 : 77 - 90
  • [43] Dynamic response of slender multilayer sandwich beams with fiber-metal laminate face-sheets subjected to low-velocity impact
    Yuan, Hui
    Zhang, Jianxun
    THIN-WALLED STRUCTURES, 2022, 172
  • [44] Low-velocity impact energy partition in GLARE
    Moriniere, F. D.
    Alderliesten, R. C.
    Benedictus, R.
    MECHANICS OF MATERIALS, 2013, 66 : 59 - 68
  • [45] Soft impact of GLARE fiber metal laminates
    Li, Kaikai
    Qin, Qinghua
    Cui, Tianning
    Han, Qigang
    Peng, Jixiang
    Sha, Zhendong
    Zhang, Wei
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2023, 178
  • [46] Correction to: Penetration Mechanics of GLARE™ Fiber-Metal Laminates upon Collision with Micrometeoroids
    Md. Zahid Hasan
    Journal of Dynamic Behavior of Materials, 2020, 6 : 266 - 266
  • [47] The response of hybrid titanium carbon laminates to the low-velocity impact
    Jakubczak, P.
    Bienias, J.
    ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [48] Numerical and experimental investigation of fiber metal laminates with elastomeric layers under low-velocity impact
    Zarezadeh-mehrizi, Mohammad Amin
    Liaghat, Gholamhossein
    Ahmadi, Hamed
    Taherzadeh-Fard, Alireza
    Khodadadi, Amin
    POLYMER COMPOSITES, 2022, 43 (04) : 1936 - 1947
  • [49] Effect of stacking sequence on failure mode of fiber metal laminates under low-velocity impact
    F. Taheri-Behrooz
    M. M. Shokrieh
    I. Yahyapour
    Iranian Polymer Journal, 2014, 23 : 147 - 152
  • [50] Finite element and analytical modeling to predict the frictional oblique indentation response of GLARE fiber-metal laminates
    Bikakis, George S. E.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2017, 36 (11) : 797 - 807