CLASSIFICATION AND CORRELATION OF SURFACE ROUGHNESS IN METALLIC PARTS USING TEXTURE DESCRIPTORS

被引:0
|
作者
Suarez, Sir
Alegre, Enrique
Barreiro, Joaquin
Morala-Arguello, Patricia
Gonzalez-Castro, Victor
机构
关键词
roughness; laws; co-occurrence matrix; surface texture;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a method to classify the surface roughness in metallic part after machining processes using an artificial vision system. Two texture analysis methods are used: Co-occurrence matrix (GLOW) and the energy of the texture obtained by Laws' method. These descriptors are classified with Lineal and Quadratic Discriminant Analysis (LDA and QDA) and Artificial Neural Networks (ANN.) The best results have been achieved using the Laws mask R5R5 (94.03%) and the combined correlation descriptor extracted from the GLCM (94.23%), both classified using Neural Networks. These results show the success of the method and the possibility to correlate these descriptors with the average roughness (Ra).
引用
收藏
页码:1293 / 1294
页数:2
相关论文
共 50 条
  • [21] Multiresolution LDBP descriptors for texture classification using anisotropic diffusion with an application to wood texture analysis
    Hiremath, P. S.
    Bhusnurmath, Rohini A.
    PATTERN RECOGNITION LETTERS, 2017, 89 : 8 - 17
  • [22] Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods
    Ramos-Grez, JA
    Bourell, DL
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2004, 21 (04): : 297 - 316
  • [23] REDUCING SURFACE ROUGHNESS OF METALLIC FREEFORM-FABRICATED PARTS USING NON-TACTILE FINISHING METHODS
    Ramos-Grez, J. A.
    Bourell, D. L.
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING, 2003, : 50 - 58
  • [24] Illuminant Invariant Descriptors for Color Texture Classification
    Cusano, Claudio
    Napoletano, Paolo
    Schettini, Raimondo
    COMPUTATIONAL COLOR IMAGING, CCIW 2013, 2013, 7786 : 239 - 249
  • [25] Multiscale Fractal Descriptors Applied to Texture Classification
    Florindo, Joao Batista
    Bruno, Odemir Martinez
    IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [26] Automatic classification of urban pavements using mobile LiDAR data and roughness descriptors
    Diaz-Vilarino, L.
    Gonzalez-Jorge, H.
    Bueno, M.
    Arias, P.
    Puente, I.
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 102 : 208 - 215
  • [27] Texture descriptors for generic pattern classification problems
    Nanni, Loris
    Brahnam, Sheryl
    Lumini, Alessandra
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) : 9340 - 9345
  • [28] DOMINANT TEXTURE DESCRIPTORS FOR IMAGE CLASSIFICATION AND RETRIEVAL
    Fadeev, Aleksey
    Frigui, Hichem
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 989 - 992
  • [29] Roughness and texture correlation of Al films
    Wenjie Zhang
    Leeward Yi
    Juineng Tu
    Pingyi Chang
    Duli Mao
    Jin Wu
    Journal of Electronic Materials, 2005, 34 : 1307 - 1309
  • [30] Roughness and texture correlation of Al films
    Zhang, WJ
    Yi, LW
    Tu, JN
    Chang, PY
    Mao, DL
    Wu, J
    JOURNAL OF ELECTRONIC MATERIALS, 2005, 34 (10) : 1307 - 1309