State-dependent parameter model identification for inverse dead-zone control of a hydraulic manipulator

被引:8
|
作者
West, C. [1 ]
Wilson, E. D. [1 ]
Clairon, Q. [2 ]
Monk, S. [1 ]
Montazeri, A. [1 ]
Taylor, C. J. [1 ]
机构
[1] Univ Lancaster, Engn Dept, Lancaster, England
[2] Univ Newcastle, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
基金
英国工程与自然科学研究理事会;
关键词
Identification for control; nonlinear system identification; parameter-varying systems; robotic manipulators; anti-windup; application of nonlinear analysis and design;
D O I
10.1016/j.ifacol.2018.09.102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The robotic platform in this study has dual, seven-function, hydraulically actuated manipulators, which are being used for research into assisted tele-operation for common nuclear decommissioning tasks, such as pipe cutting. The article concerns the identification of state dependent parameter (SDP) models for joint angle control. Compared to earlier SDP analysis of the same device, the present work proposes a new way of representing the state-dependent gain and parametrises this using novel regret-regression methods. A mechanistic interpretation of this model yields dead-zone and angular velocity saturation coefficients, and facilitates SDP based control with an inverse dead-zone. This approach integrates the input signal calibration, system identification and nonlinear control system design steps, using a relatively small data set, allowing for straightforward recalibration when the dynamic characteristics have changed due to age and use, or after the installation of replacement parts. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 131
页数:6
相关论文
共 50 条
  • [21] Output Feedback Control via Linear Extended State Observer for an Uncertain Manipulator with Output Constraints and Input Dead-Zone
    Duc Thien Tran
    Hoang Vu Dao
    Truong Quang Dinh
    Kyoung Kwan Ahn
    ELECTRONICS, 2020, 9 (09) : 1 - 22
  • [22] Quantized Model-Parameter-Free Tracking Control for Autonomous Underwater Vehicles with Dead-Zone Nonlinearity
    Zhang, Enhua
    Wang, Jian
    Liu, Zhaoyang
    Liang, Xiaofeng
    Yi, Hong
    OCEANS 2024 - SINGAPORE, 2024,
  • [23] Intelligent complementary sliding-mode control with dead-zone parameter modification
    Hsu, Chun-Fei
    Kuo, Tzu-Chun
    APPLIED SOFT COMPUTING, 2014, 23 : 355 - 365
  • [24] Simultaneous State and Dead-Zone Parameter Estimation for a Class of Bounded-State Nonlinear Systems
    Ibrir, Salim
    Su, Chun-Yi
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (04) : 911 - 919
  • [25] Parameter Identification for the Valve Control Cylinder System of a Hydraulic Manipulator
    谢庆华
    裴文开
    姜斌
    张琦
    Journal of China Ordnance, 2006, (04) : 306 - 309
  • [26] Active Disturbance Rejection Adaptive Control for Hydraulic Lifting Systems with Valve Dead-Zone
    Yang, Fengbo
    Zhou, Hongping
    Deng, Wenxiang
    ELECTRONICS, 2022, 11 (11)
  • [27] Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation
    Deng, Wenxiang
    Yao, Jianyong
    Ma, Dawei
    ISA TRANSACTIONS, 2017, 70 : 269 - 278
  • [28] Adaptive Visual Tracking Control for Manipulator With Actuator Fuzzy Dead-Zone Constraint and Unmodeled Dynamic
    Liu, Zhi
    Wang, Fujie
    Zhang, Yun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2015, 45 (10): : 1301 - 1312
  • [29] Simultaneous state and dead-zone parameter estimation using high-gain observers
    Ibrir, Salim
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 311 - 316
  • [30] Adaptive Neural Command Filtered Tracking Control for Flexible Robotic Manipulator With Input Dead-Zone
    Wang, Huanqing
    Kang, Shijia
    IEEE ACCESS, 2019, 7 : 22675 - 22683