A degree condition for fractional [a, b]-covered graphs

被引:19
|
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Network; Combinatorial problems; Degree condition; Fractional; a; b]-covered graph; ORTHOGONAL FACTORIZATIONS; EXISTENCE; EVEN; (A;
D O I
10.1016/j.ipl.2018.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph of order n with delta(G) >= a + 1, and 3 <= a <= b be integers. In this paper, we first show that if G satisfies max{d(G)(X),d(G)(Y)} >= a(n+1)/a+b for each pair of nonadjacent vertices x, y of G, then G is a fractional [a,b]-covered graph. It is a generalization of the known result with a = b = k which is given by Zhou. Furthermore, we show that this result is best possible in some sense. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [41] A Degree Condition for Graphs Having All(a, b)-parity Factors
    Hao-dong LIU
    Hong-liang LU
    ActaMathematicaeApplicataeSinica, 2024, 40 (03) : 656 - 664
  • [42] A neighborhood condition for all fractional (a, b, k)-critical graphs
    Jiang, Jiashang
    ARS COMBINATORIA, 2019, 142 : 55 - 63
  • [43] A note on fractional ID-[a, b]-factor-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 511 - 516
  • [44] Degree sums and graphs that are not covered by two cycles
    Saito, A
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 51 - 61
  • [45] Notes on fractional k-covered graphs
    Zhou, Sizhong
    Xu, Yang
    International Journal of Computational and Mathematical Sciences, 2010, 4 (01): : 20 - 22
  • [46] Notes on fractional k-covered graphs
    Zhou, Sizhong
    Xu, Yang
    World Academy of Science, Engineering and Technology, 2010, 67 : 301 - 303
  • [47] On fractional (g, f, m)-covered graphs
    Liu, Shuli
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 246 - 248
  • [48] Toughness condition for the existence of all fractional (a, b, k)-critical graphs
    Yuan, Yuan
    Hao, Rong-Xia
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2308 - 2314
  • [49] A DEGREE CONDITION IMPLYING ORE-TYPE CONDITION FOR EVEN [2,b]-FACTORS IN GRAPHS
    Tsuchiya, Shoichi
    Yashima, Takamasa
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 797 - 809
  • [50] REMARKS ON FRACTIONAL ID-[a,b]-FACTOR-CRITICAL COVERED NETWORK GRAPHS
    Wang, Sufang
    Zhang, Wei
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2021, 22 (03): : 209 - 216