Learning object categories from Google's image search

被引:0
|
作者
Fergus, R [1 ]
Fei-Fei, L [1 ]
Perona, P [1 ]
Zisserman, A [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Internet. We develop a new model, TSI-pLSA, which extends pLSA (as applied to visual words) to include spatial information in a translation and scale invariant manner Our approach can handle the high intra-class variability and large proportion of unrelated images returned by search engines. We evaluate the models on standard test sets, showing performance competitive with existing methods trained on hand prepared datasets.
引用
收藏
页码:1816 / 1823
页数:8
相关论文
共 50 条
  • [31] Aversive Learning Modulates Cortical Representations of Object Categories
    Dunsmoor, Joseph E.
    Kragel, Philip A.
    Martin, Alex
    LaBar, Kevin S.
    CEREBRAL CORTEX, 2014, 24 (11) : 2859 - 2872
  • [32] Learning Visual Object Categories for Robot Affordance Prediction
    Sun, Jie
    Moore, Joshua L.
    Bobick, Aaron
    Rehg, James M.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (2-3): : 174 - 197
  • [33] Loose shape model for discriminative learning of object categories
    Osadchy, Margarita
    Morash, Elran
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2016 - 2021
  • [34] Learning Hierarchical Representations of Object Categories for Robot Vision
    Leonardis, Ales
    Fidler, Sanja
    ROBOTICS RESEARCH, 2010, 66 : 99 - 110
  • [35] Modelling and unsupervised learning of symmetric deformable object categories
    Thewlis, James
    Bilen, Hakan
    Vedaldi, Andrea
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [36] Learning the Compositional Nature of Visual Object Categories for Recognition
    Ommer, Bjoern
    Buhmann, Joachim M.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) : 501 - 516
  • [37] Fragment-based learning of visual object categories
    Hegde, Jay
    Bart, Evgeniy
    Kersten, Daniel
    CURRENT BIOLOGY, 2008, 18 (08) : 597 - 601
  • [38] Benefit of Google Search Engine in Learning and Teaching Collocations
    Zengin, Bugra
    EGITIM ARASTIRMALARI-EURASIAN JOURNAL OF EDUCATIONAL RESEARCH, 2009, 8 (34): : 151 - 166
  • [39] Geographic object-based image analysis for landslide identification using machine learning on google earth engine
    Khadka, Diwakar
    Zhang, Jie
    Sharma, Atma
    ENVIRONMENTAL EARTH SCIENCES, 2025, 84 (03)
  • [40] Mass Prediction and Analysis of an Object’s Mass from Its Image Using Deep Learning
    Nath A.
    Patel D.
    Niyogi R.
    SN Computer Science, 5 (6)