Mechanism of the long-wave inertialess instability of a two-layer film flow

被引:15
|
作者
Gao, Peng [1 ]
Lu, Xi-Yun [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1017/S0022112008002437
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper provides an intuitive interpretation of the long-wave inertialess instability of a two-layer film flow. The underlying mechanism is elucidated by inspecting the longitudinal perturbation velocity associated with the surface and interfacial deflections. The velocity is expressed by the composition of three parts, related to the shear stress at the free surface, the continuity condition at the interface, and the pressure disturbance induced by gravity. The effect of each velocity component on the evolutions of the surface and the interface is examined in detail. Specifically, the growth of the free surface is caused by the continuity-induced first-order velocity disturbance associated with an additional phase shift between the surface and interfacial waves, while the growth of the interface is due to the pressure-driven flow. The proposed mechanism gives an alternatively reliable prediction of the wave velocity and growth rate.
引用
收藏
页码:379 / 391
页数:13
相关论文
共 50 条