Amplitude control of bifurcations and application to Rayleigh-Benard convection

被引:0
|
作者
Chen, D [1 ]
Wang, HO [1 ]
Howle, LE [1 ]
Gustafson, MR [1 ]
Meressi, T [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bifurcation control deals with the modification of the bifurcation characteristics of a parameterized nonlinear system by a judiciously designed control input. In this paper, we focus on the problem of controlling the amplitude of bifurcated solutions. It is shown that the amplitude of the bifurcated solutions is directly related to the so-called bifurcation stability coefficient. The bifurcation amplitude control is applied to the active control of Rayleigh-Benard convection. Cubic feedback control laws are designed to suppress the convection amplitude. From the mathematical analysis of the governing partial differential equations, two (spatially) distributed cubic control laws, one in pseudo-spectral coordinates and one in physical spatial coordinates, are proposed. Simulation results demonstrate that both are able to suppress the convection amplitude. A composite bifurcation control law combining a linear control law and a cubic control law is considered to be most effective and flexible for this problem. Experimental investigations are ongoing to accompany the theoretical findings.
引用
收藏
页码:1951 / 1956
页数:6
相关论文
共 50 条
  • [31] TEMPERATURE MODULATION IN RAYLEIGH-BENARD CONVECTION
    Singh, Jitender
    Bajaj, Renu
    ANZIAM JOURNAL, 2008, 50 (02): : 231 - 245
  • [32] SPATIOTEMPORAL INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    CILIBERTO, S
    BIGAZZI, P
    PHYSICAL REVIEW LETTERS, 1988, 60 (04) : 286 - 289
  • [33] EXTERNAL MODULATION OF RAYLEIGH-BENARD CONVECTION
    NIEMELA, JJ
    DONNELLY, RJ
    PHYSICAL REVIEW LETTERS, 1987, 59 (21) : 2431 - 2434
  • [34] Asymmetries in Turbulent Rayleigh-Benard Convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    PROGRESS IN TURBULENCE III, 2010, 131 : 179 - 182
  • [35] Heat flux in Rayleigh-Benard convection
    Shibata, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 352 (2-4) : 335 - 346
  • [36] ON ULTIMATE REGIME OF RAYLEIGH-BENARD CONVECTION
    Palymskiy, Igor
    COMPUTATIONAL THERMAL SCIENCES, 2015, 7 (04): : 339 - 344
  • [37] Mode interactions in Rayleigh-Benard convection
    Cox, S.M.
    Physica D: Nonlinear Phenomena, 1996, 95 (01):
  • [38] PATTERN FORMATION IN RAYLEIGH-BENARD CONVECTION
    Sengul, Taylan
    Wang, Shouhong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (01) : 315 - 343
  • [39] Rayleigh-Benard convection with a melting boundary
    Favier, B.
    Purseed, J.
    Duchemin, L.
    JOURNAL OF FLUID MECHANICS, 2019, 858 : 437 - 473
  • [40] Effect of inertia in Rayleigh-Benard convection
    Breuer, M
    Wessling, S
    Schmalzl, J
    Hansen, U
    PHYSICAL REVIEW E, 2004, 69 (02): : 026302 - 1