CHAOS IN FRACTIONAL-ORDER POPULATION MODEL

被引:10
|
作者
Petras, Ivo [1 ]
机构
[1] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia
来源
关键词
Fractional calculus; chaos; fractional-order system; Lotka-Volterra equations; FREQUENCY-DOMAIN APPROXIMATION; SYSTEMS;
D O I
10.1142/S0218127412500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a fractional-order population model which consists of the two-predators and one-prey scheme. For this new model, the numerical solution is derived and the simulations are performed for various sets of model parameters together with stability analysis for commensurate and incomensurate orders of the fractional-order population model. The results obtained via the simulations show that chaos can be observed in such population model.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Chaos synchronization of fractional-order differential systems
    Li, CP
    Deng, WH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (07): : 791 - 803
  • [22] Chaos Control of a Fractional-Order Financial System
    Abd-Elouahab, Mohammed Salah
    Hamri, Nasr-Eddine
    Wang, Junwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [23] Chaos and hyperchaos in the fractional-order Rossler equations
    Li, CG
    Chen, GR
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 55 - 61
  • [24] Chaos in a fractional-order neutral differential system
    Feng, Yong
    Lin, Xiaoran
    Zhou, Shangbo
    Li, Hua
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 233 - 238
  • [25] Impulsive stabilization of chaos in fractional-order systems
    Marius-F. Danca
    Michal Fečkan
    Guanrong Chen
    Nonlinear Dynamics, 2017, 89 : 1889 - 1903
  • [26] Impulsive stabilization of chaos in fractional-order systems
    Danca, Marius-F.
    Feckan, Michal
    Chen, Guanrong
    NONLINEAR DYNAMICS, 2017, 89 (03) : 1889 - 1903
  • [27] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [28] Chaos in fractional-order Liu system and a fractional-order unified system and the synchronization between them
    Zhang Cheng-Fen
    Gao Jin-Feng
    Xu Lei
    ACTA PHYSICA SINICA, 2007, 56 (09) : 5124 - 5130
  • [29] Controlling Chaos for a Fractional-Order Discrete System
    Alberto Quezada-Tellez, Luis
    Franco-Perez, Luis
    Fernandez-Anaya, Guillermo
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2020, 1 : 263 - 269
  • [30] New Fractional Calculus and Application to the Fractional-order of Extended Biological Population Model
    Neirameh, Ahmad
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (03): : 115 - 128