Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results

被引:17
|
作者
Zhao, Shupeng [1 ]
Butt, Saad Ihsan [2 ]
Nazeer, Waqas [3 ]
Nasir, Jamshed [2 ]
Umar, Muhammad [2 ]
Liu, Ya [4 ]
机构
[1] Huarong Secur Co LTD, Sichuan Branch, Chengdu, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Lahore, Pakistan
[3] GC Univ Lahore, Dept Math, Lahore, Pakistan
[4] Sichuan Normal Univ, Sch Business, Chengdu, Peoples R China
关键词
Convex functions; Hermite-Hadamard inequalities; Jensen inequality; Jensen-Mercer inequality; k-Caputo fractional derivatives;
D O I
10.1186/s13662-020-02693-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, certain Hermite-Hadamard-Mercer type inequalities are proved via k-Caputo fractional derivatives. We established some new k-Caputo fractional derivatives inequalities with Hermite-Hadamard-Mercer type inequalities for differentiable mapping psi((n)) whose derivatives in the absolute values are convex.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] SOME CAPUTO k-FRACTIONAL DERIVATIVES OF OSTROWSKI TYPE CONCERNING (n
    Kashuri, Artion
    Liko, Rozana
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 973 - 996
  • [42] Jensen-Mercer and Hermite-Hadamard-Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications
    Fahad, Asfand
    Ayesha
    Wang, Yuanheng
    Butt, Saad Ihsaan
    MATHEMATICS, 2023, 11 (02)
  • [43] Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization
    Wu, Shanhe
    Khan, Muhammad Adil
    Faisal, Shah
    Saeed, Tareq
    Nwaeze, Eze R.
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [44] Jensen-Mercer inequality for GA-convex functions and some related inequalities
    Iscan, Imdat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [45] Fractional Jensen-Mercer Type Inequalities Involving Generalized Raina's Function and Applications
    Nonlaopon, Kamsing
    Awan, Muhammad Uzair
    Asif, Usama
    Javed, Muhammad Zakria
    Slimane, Ibrahim
    Kashuri, Artion
    SYMMETRY-BASEL, 2022, 14 (10):
  • [46] FRACTIONAL INTEGRAL INEQUALITIES OF OSTROWSKI AND HADAMARD TYPE VIA k-ANALOGUES OF CAPUTO DERIVATIVES
    Liu, Yonghong
    Farid, Ghulam
    Alkhalifa, Loay
    Nazeer, Waqas
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [47] SOME NOTE ON JENSEN-MERCER'S TYPE INEQUALITIES; EXTENSIONS AND REFINEMENTS WITH APPLICATIONS
    Horvath, Laszlo
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1093 - 1094
  • [48] On some inequalities related to fractional Hermite-Hadamard type for differentiable convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Kiris, Mehmet Eyup
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 222 - 233
  • [49] On fractional stochastic inequalities related to Hermite–Hadamard and Jensen types for convex stochastic processes
    Hamzeh Agahi
    Azizollah Babakhani
    Aequationes mathematicae, 2016, 90 : 1035 - 1043
  • [50] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725