Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator

被引:32
|
作者
Liu, Jia-Bao [1 ]
Butt, Saad Ihsan [2 ]
Nasir, Jamshed [3 ]
Aslam, Adnan [4 ]
Fahad, Asfand [5 ]
Soontharanon, Jarunee [6 ]
机构
[1] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
[2] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[3] Virtual Univ, Lahore Campus, Lahore, Pakistan
[4] Univ Engn & Technol, Lahore RCET, Lahore, Pakistan
[5] COMSATS Univ Islamabad, Vehari Campus Campus, Vehari, Pakistan
[6] King Mongkus Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 02期
关键词
Jensen-Mercer inequality; Atangana-Baleanu fractional operators; q-digamma function; convex function;
D O I
10.3934/math.2022121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping Upsilon possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
引用
收藏
页码:2123 / 2140
页数:18
相关论文
共 50 条
  • [21] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785
  • [22] Jensen-Mercer and Hermite-Hadamard-Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications
    Fahad, Asfand
    Ayesha
    Wang, Yuanheng
    Butt, Saad Ihsaan
    MATHEMATICS, 2023, 11 (02)
  • [23] On Hermite-Hadamard Type Inequalities Via Fractional Integral Operators
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    FILOMAT, 2019, 33 (03) : 837 - 854
  • [24] Jensen-Mercer Type Inequalities for Operator h-Convex Functions
    Abbasi, Mostafa
    Morassaei, Ali
    Mirzapour, Farzollah
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2441 - 2462
  • [25] The Hermite-Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral
    Wang, Hua
    Khan, Jamroz
    Adil Khan, Muhammad
    Khalid, Sadia
    Khan, Rewayat
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [26] Inequalities of the Type Hermite-Hadamard-Jensen-Mercer for Strong Convexity
    Khan, Muhammad Adil
    Anwar, Saeed
    Khalid, Sadia
    Sayed, Zaid Mohammed Mohammed Mahdi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [27] Generalization of Hermite-Hadamard Type Inequalities via Conformable Fractional Integrals
    Khan, Muhammad Adil
    Khurshid, Yousaf
    Du, Ting-Song
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [28] Hermite-Hadamard Type Inequalities for Superquadratic Functions via Fractional Integrals
    Li, Guangzhou
    Chen, Feixiang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [29] Generalization of Hermite-Hadamard, trapezoid, and midpoint Mercer type inequalities for fractional integrals in multiplicative calculus
    Mateen, Abdul
    Zhang, Zhiyue
    Ozcan, Serap
    Ali, Muhammad Aamir
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [30] New stochastic fractional integral and related inequalities of Jensen–Mercer and Hermite–Hadamard–Mercer type for convex stochastic processes
    Fahd Jarad
    Soubhagya Kumar Sahoo
    Kottakkaran Sooppy Nisar
    Savin Treanţă
    Homan Emadifar
    Thongchai Botmart
    Journal of Inequalities and Applications, 2023