Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs and Convolutional Networks

被引:11
|
作者
Dhuheir, Marwan [1 ]
Baccour, Emna [1 ]
Erbad, Aiman [1 ]
Sabeeh, Sinan [2 ]
Hamdi, Mounir [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Informat & Comp Technol, Doha, Qatar
[2] Barzan Holdings QSTP LLC, Doha, Qatar
关键词
ResNet; deep CNN; optimization; classification; Latency; inference requests; UAV;
D O I
10.1109/IWCMC51323.2021.9498967
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned Aerial Vehicles (UAVs) have recently attracted significant attention due to their outstanding ability to be used in different sectors and serve in difficult and dangerous areas. Moreover, the advancements in computer vision and artificial intelligence have increased the use of UAVs in various applications and solutions, such as forest fires detection and borders monitoring. However, using deep neural networks (DNNs) with UAVs introduces several challenges of processing deeper networks and complex models, which restricts their on-board computation. In this work, we present a strategy aiming at distributing inference requests to a swarm of resource-constrained UAVs that classifies captured images on-board and finds the minimum decision-making latency. We formulate the model as an optimization problem that minimizes the latency between acquiring images and making the final decisions. The formulated optimization solution is an NP-hard problem. Hence it is not adequate for online resource allocation. Therefore, we introduce an online heuristic solution, namely DistInference, to find the layers placement strategy that gives the best latency among the available UAVs. The proposed approach is general enough to be used for different low decision-latency applications as well as for all CNN types organized into pipeline of layers (e.g., VGG) or based on residual blocks (e.g., ResNet).
引用
收藏
页码:1954 / 1959
页数:6
相关论文
共 50 条
  • [41] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [42] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [43] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [44] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [45] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +
  • [46] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodríguez, Alba
    Domínguez-Carbajales, Rubén
    Campos-Tato, Fernando
    Herrero, Jesús
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sánchez, Eloy
    Iglesias, Águeda
    Cubiella, Joaquín
    Fdez-Riverola, Florentino
    López-Fernández, Hugo
    Reboiro-Jato, Miguel
    Glez-Peña, Daniel
    Neural Computing and Applications, 2022, 34 (13) : 10375 - 10396
  • [47] Real-time emotion recognition using echo state networks
    Scherer, Stefan
    Oubbati, Mohamed
    Schwenker, Friedhelm
    Palm, Guenther
    PERCEPTION IN MULTIMODAL DIALOGUE SYSTEMS, PROCEEDINGS, 2008, 5078 : 200 - 204
  • [48] A Real-Time Dynamic Gesture Variability Recognition Method Based on Convolutional Neural Networks
    Amangeldy, Nurzada
    Milosz, Marek
    Kudubayeva, Saule
    Kassymova, Akmaral
    Kalakova, Gulsim
    Zhetkenbay, Lena
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [49] A Real-Time Recognition Algorithm for Speed Limit Signs Based on Convolutional Neural Networks
    Sun, Wencai
    Li, Wei
    Li, Shiwu
    CICTP 2020: ADVANCED TRANSPORTATION TECHNOLOGIES AND DEVELOPMENT-ENHANCING CONNECTIONS, 2020, : 3914 - 3927
  • [50] Ensemble of deep convolutional neural networks for real-time gravitational wave signal recognition
    Ma, CunLiang
    Wang, Wei
    Wang, He
    Cao, Zhoujian
    PHYSICAL REVIEW D, 2022, 105 (08)