Electron transport and Goos-Hanchen shift in graphene with electric and magnetic barriers: optical analogy and band structure

被引:82
|
作者
Sharma, Manish [1 ]
Ghosh, Sankalpa [2 ,3 ]
机构
[1] Indian Inst Technol Delhi, Ctr Appl Res Elect, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
QUANTUM INTERFERENCE; DIRAC FERMIONS; NANOSTRUCTURES; COLLOQUIUM; SPIN; LENS;
D O I
10.1088/0953-8984/23/5/055501
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Transport of massless Dirac fermions in graphene monolayers is analysed in the presence of a combination of singular magnetic barriers and applied electrostatic potential. Extending a recently proposed (Ghosh and Sharma 2009 J. Phys.: Condens. Matter 21 292204) analogy between the transmission of light through a medium with modulated refractive index and electron transmission in graphene through singular magnetic barriers to the present case, we find the addition of a scalar potential profoundly changes the transmission. We calculate the quantum version of the Goos-Hanchen shift that the electron wave suffers upon being totally reflected by such barriers. The combined electric and magnetic barriers substantially modify the band structure near the Dirac point. This affects transport near the Dirac point significantly and has important consequences for graphene-based electronics.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Theory of Goos-Hanchen shift in graphene: Energy-flux method
    Moradi, Afshin
    EPL, 2017, 120 (06)
  • [22] Increase of Goos-Hanchen Shift Based on Exceptional Optical Bound States
    Wu Feng
    Wu Jiaju
    Guo Zhiwei
    Sun Yong
    Li Yunhui
    Jiang Haitao
    Chen Hong
    ACTA OPTICA SINICA, 2021, 41 (08)
  • [23] Direct experimental observation of the single reflection optical Goos-Hanchen shift
    Schwefel, H. G. L.
    Koehler, W.
    Lu, Z. H.
    Fan, J.
    Wang, L. J.
    OPTICS LETTERS, 2008, 33 (08) : 794 - 796
  • [24] Large negative and positive optical Goos-Hanchen shift in photonic crystals
    Wong, Yu-Po
    Miao, Yu
    Skarda, Jinhie
    Solgaard, Olav
    OPTICS LETTERS, 2018, 43 (12) : 2803 - 2806
  • [25] Giant enhancement of Goos-Hanchen shift in graphene-based dielectric grating
    Li, Tingwei
    Da, Haixia
    Du, Xiaodong
    He, JingJing
    Yan, Xiaohong
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (11)
  • [26] An Optical Relative Humidity Sensor Based on the Enhanced Goos-Hanchen Shift
    Wang, Xianping
    Yuan, Wen
    Sang, MingHuang
    2015 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC), 2015,
  • [27] Goos-Hanchen effect for optical vibrational modes in a semiconductor structure
    Villegas, Diosdado
    Arriaga, J.
    de Leon-Perez, Fernando
    Perez-Alvarez, R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (12)
  • [28] Enhancement and control of the Goos-Hanchen shift by nonlinear surface plasmon resonance in graphene
    You, Qi
    Jiang, Leyong
    Dai, Xiaoyu
    Xiang, Yuanjiang
    CHINESE PHYSICS B, 2018, 27 (09)
  • [29] Control of Goos-Hanchen Shift Based on Graphene/Hexagonal Boron Nitride Heterostructure
    Lu Fangyuan
    Yan Xingbin
    Lin Wei
    Zheng Zhiwei
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (13)
  • [30] Enhanced and controllable Goos-Hanchen shift with graphene surface plasmon in the terahertz regime
    Zheng, Zhiwei
    Lu, Fangyuan
    Jiang, Leyong
    Jin, Xiangliang
    Dai, Xiaoyu
    Xiang, Yuanjiang
    OPTICS COMMUNICATIONS, 2019, 452 : 227 - 232