The numerical range of some periodic tridiagonal operators is the convex hull of the numerical ranges of two finite matrices

被引:1
|
作者
Itza-Ortiz, Benjamin A. [1 ]
Martinez-Avendano, Ruben A. [2 ]
Nakazato, Hiroshi [3 ]
机构
[1] Univ Autonoma Estado Hidalgo, Ctr Invest Matemat, Pachuca, Hidalgo, Mexico
[2] Inst Tecnol Autonomo Mexico, Dept Acad Matemat, Mexico City, DF, Mexico
[3] Hirosaki Univ, Dept Math & Phys, Hirosaki, Aomori, Japan
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 15期
关键词
Numerical range; tridiagonal operators; SPECTRUM;
D O I
10.1080/03081087.2021.1957760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a conjecture stated by the first two authors establishing the closure of the numerical range of a certain class of n + 1-periodic tridiagonal operators as the convex hull of the numerical ranges of two tridiagonal (n + 1) x (n + 1) matrices. Furthermore, when n + 1 is odd, we show that the size of such matrices simplifies to n/2 + 1.
引用
收藏
页码:2830 / 2849
页数:20
相关论文
共 50 条
  • [21] On the numerical ranges of some tridiagonal matrices to Professor Leiba Rodman on the occasion of his 65th birthday
    Chien, Ruey Ting
    Spitkovsky, Ilya M.
    Linear Algebra and Its Applications, 2015, 470 : 228 - 240
  • [22] ON THE MAXIMAL NUMERICAL RANGE OF SOME MATRICES
    Hamed, Ali N.
    Spitkovsky, Ilya M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 288 - 303
  • [23] The numerical range of periodic banded Toeplitz operators
    Benjamín A. Itzá-Ortiz
    Rubén A. Martínez-Avendaño
    Hiroshi Nakazato
    Advances in Operator Theory, 2024, 9
  • [24] The numerical range of periodic banded Toeplitz operators
    Itza-Ortiz, Benjamin A.
    Martinez-Avendano, Ruben A.
    Nakazato, Hiroshi
    ADVANCES IN OPERATOR THEORY, 2024, 9 (01)
  • [25] Criteria for the Absence of Point Spectrum on the Boundary of the Numerical Range of Tridiagonal Matrices
    P. D. Srivastava
    Riddhick Birbonshi
    Arnab Patra
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 245 - 250
  • [26] Criteria for the Absence of Point Spectrum on the Boundary of the Numerical Range of Tridiagonal Matrices
    Srivastava, P. D.
    Birbonshi, Riddhick
    Patra, Arnab
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (02) : 245 - 250
  • [27] THE q-NUMERICAL RANGE OF 3 x 3 TRIDIAGONAL MATRICES
    Chien, Mao-Ting
    Nakazato, Hiroshi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 376 - 390
  • [28] On the Numerical Range of some Bounded Operators
    Khorami, M. M.
    Ershad, F.
    Yousefi, B.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [29] On the numerical range of matrices over a finite field
    Ballico, E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 162 - 171
  • [30] ELLIPTICAL RANGE THEOREMS FOR GENERALIZED NUMERICAL RANGES OF QUADRATIC OPERATORS
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (03) : 813 - 832