LOCAL WELLPOSEDNESS FOR THE 2+1-DIMENSIONAL MONOPOLE EQUATION

被引:10
|
作者
Czubak, Magdalena [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
来源
ANALYSIS & PDE | 2010年 / 3卷 / 02期
关键词
monopole; null form; Coulomb gauge; wellposedness; NONLINEAR-WAVE EQUATIONS; YANG-MILLS EQUATIONS; NULL FORMS; EXISTENCE; REDUCTIONS; REGULARITY; DIMENSIONS; SYSTEMS;
D O I
10.2140/apde.2010.3.151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The space-time monopole equation on R(2+1) can be derived by a dimensional reduction of the antiselfdual Yang-Mills equations on R(2+2). It can be also viewed as the hyperbolic analog of Bogomolny equations. We uncover null forms in the nonlinearities and employ optimal bilinear estimates in the framework of wave-Sobolev spaces. As a result, we show the equation is locally wellposed in the Coulomb gauge for initial data sufficiently small in H(s) for s > 1/4
引用
收藏
页码:151 / 174
页数:24
相关论文
共 50 条
  • [31] A NEW 2+1-DIMENSIONAL HAMILTONIAN INTEGRABLE SYSTEM
    Yazici, Devrim
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2009, 27 (02): : 118 - 128
  • [32] The spectrum of the 2+1-dimensional gauge Ising model
    Agostini, V
    Carlino, G
    Caselle, M
    Hasenbusch, M
    NUCLEAR PHYSICS B, 1997, 484 (1-2) : 331 - 352
  • [33] Exact interior solutions in 2+1-dimensional spacetime
    Rahaman, Farook
    Bhar, Piyali
    Biswas, Ritabrata
    Usmani, A. A.
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (04): : 1 - 7
  • [34] Topology and incompleteness for 2+1-dimensional cosmological spacetimes
    David Fajman
    Letters in Mathematical Physics, 2017, 107 : 1157 - 1176
  • [36] Analog dual to a 2+1-dimensional holographic superconductor
    Bilic, Neven
    Fabris, Julio C.
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (16)
  • [37] Topology and incompleteness for 2+1-dimensional cosmological spacetimes
    Fajman, David
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1157 - 1176
  • [38] NON-TRIVIAL 2+1-DIMENSIONAL GRAVITY
    Grigore, D. R.
    Scharf, G.
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (5-6): : 583 - 598
  • [39] 2+1-dimensional gravitational decoupled anisotropic solutions
    Sharif, M.
    Sadiq, Sobia
    CHINESE JOURNAL OF PHYSICS, 2019, 60 : 279 - 289
  • [40] ON A 2+1-DIMENSIONAL DARBOUX SYSTEM - INTEGRABLE REDUCTIONS
    SCHIEF, WK
    INVERSE PROBLEMS, 1994, 10 (05) : 1185 - 1198