A family of quasi-solvable quantum many-body systems

被引:3
|
作者
Tanaka, T [1 ]
机构
[1] Kyoto Univ, Fac Integrated Human Studies, Kyoto 6068501, Japan
关键词
quantum many-body problem; quasi-solvability; supersymmetry; Inozemtsev models; Calogero-Sutherland models;
D O I
10.1016/S0370-2693(03)00866-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a family of quasi-solvable quantum many-body systems by an algebraic method. The models contain up to two-body interactions and have permutation symmetry. We classify these models under the consideration of invariance property. It turns out that this family includes the rational, hyperbolic (trigonometric) and elliptic Inozemtsev models as particular cases. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 106
页数:7
相关论文
共 50 条
  • [41] Quantum hypothesis testing in many-body systems
    de Boer, Jan
    Godet, Victor
    Kastikainen, Jani
    Keski-Vakkuri, Esko
    SCIPOST PHYSICS CORE, 2021, 4 (02):
  • [42] Aspects of Entanglement in Quantum Many-Body Systems
    John W. Clark
    Hessam Habibian
    Aikaterini D. Mandilara
    Manfred L. Ristig
    Foundations of Physics, 2010, 40 : 1200 - 1220
  • [43] PERTURBATION EXPANSIONS FOR QUANTUM MANY-BODY SYSTEMS
    GELFAND, MP
    SINGH, RRP
    HUSE, DA
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) : 1093 - 1142
  • [44] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [45] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [46] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [47] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [48] THE ERGODIC BEHAVIOUR OF QUANTUM MANY-BODY SYSTEMS
    VANHOVE, L
    PHYSICA, 1959, 25 (04): : 268 - 276
  • [49] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [50] Approach to typicality in many-body quantum systems
    Dubey, Shawn
    Silvestri, Luciano
    Finn, Justin
    Vinjanampathy, Sai
    Jacobs, Kurt
    PHYSICAL REVIEW E, 2012, 85 (01):