ON LONG TIME BEHAVIOR OF SOLUTIONS OF THE SCHRODINGER-KORTEWEG-DE VRIES SYSTEM

被引:3
|
作者
Linares, Felipe [1 ]
Mendez, Argenis J. [2 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
关键词
asymptotic behavior; decay of solutions; Schrodinger-Korteweg-de Vries; INTERNAL GRAVITY-WAVE; WELL-POSEDNESS; SOLITARY WAVES; CAUCHY-PROBLEM; BOUND-STATES; KDV; STABILITY; EXISTENCE; EQUATION; BREATHERS;
D O I
10.1137/20M137553X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the decay of long time solutions of the IVP associated to the Schrodinger-Korteweg-de Vries system. We use recent techniques in order to show that solutions of this system decay to zero in the energy space. The result is independent of the integrability of the equations involved, and it does not require any size assumptions.
引用
收藏
页码:3838 / 3855
页数:18
相关论文
共 50 条
  • [11] Averaging Principle for Multiscale Stochastic Fractional Schrodinger-Korteweg-de Vries System
    Gao, Peng
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1781 - 1816
  • [12] The optical soliton solutions of generalized coupled nonlinear Schrodinger-Korteweg-de Vries equations
    Akinyemi, Lanre
    Senol, Mehmet
    Akpan, Udoh
    Oluwasegun, Kayode
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (07)
  • [13] Solitons of the coupled Schrodinger-Korteweg-de Vries system with arbitrary strengths of the nonlinearity and dispersion
    Gromov, Evgeny
    Malomed, Boris
    CHAOS, 2017, 27 (11)
  • [14] Some novel solitary wave solutions to the generalized coupled nonlinear Schrodinger-Korteweg-de Vries equations
    Tariq, Kalim U.
    Seadawy, Aly R.
    Ahmed, Arslan
    RESULTS IN PHYSICS, 2022, 35
  • [15] Multi-hump bright and dark solitons for the Schrodinger-Korteweg-de Vries coupled system
    Parra Prado, Hugo
    Cisneros-Ake, Luis A.
    CHAOS, 2019, 29 (05)
  • [16] LONG-TIME BEHAVIOR OF SOLUTIONS OF THE GENERALIZED KORTEWEG DE VRIES EQUATION
    Said-Houari, Belkacem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 245 - 252
  • [17] The initial-boundary value problem for the Schrodinger-Korteweg-de Vries system on the half-line
    Cavalcante, Marcio
    Corcho, Adan J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [18] Traveling wave solutions of a coupled Schrodinger-Korteweg-de Vries equation by the generalized coupled trial equation method
    Shang, Jiaxin
    Li, Wenhe
    Li, Da
    HELIYON, 2023, 9 (05)
  • [19] Numerical simulation for coupled nonlinear Schrodinger-Korteweg-de Vries and Maccari systems of equations
    Akinyemi, Lanre
    Veeresha, Pundikala
    Ajibola, Samuel Oluwatosin
    MODERN PHYSICS LETTERS B, 2021, 35 (20):
  • [20] On the existence of bound and ground states for some coupled nonlinear Schrodinger-Korteweg-de Vries equations
    Colorado, Eduardo
    ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (04) : 407 - 426