Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method

被引:54
|
作者
El-Borai, M. M. [1 ]
El-Owaidy, H. M. [2 ]
Ahmed, Hamdy M. [3 ]
Arnous, Ahmed H. [3 ]
Moshokoa, Seithuti [4 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Univ Alexandria, Fac Sci, Dept Math, Qesm Bab Sharqi, Alexandria Gove, Egypt
[2] Al Azhar Univ, Nasr City, Cairo Governora, Egypt
[3] Higher Inst Engn, Dept Engn Math & Phys, 15th Of May City, Cairo Governora, Egypt
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 80203, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 128卷
关键词
Solitons; Eckhaus equation; Extended Kudryashov method; NONLINEAR EVOLUTION-EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; OPTICAL SOLITONS; (G'/G)-EXPANSION METHOD; NANO-FIBERS;
D O I
10.1016/j.ijleo.2016.10.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we apply the extended Kudryashov method to a nonlinear Schrodinger type equation called the Kundu-Eckhaus equation or the Eckhaus equation which was independently introduced by Wiktor Eckhaus and by Anjan Kundu in 1984-1985 to model the propagation of waves in dispersive media. The proposed method is direct, effective and takes full advantages of the Bernoulli and Riccati equations to construct new exact solutions of that model and can be extended to many nonlinear evolution equations in mathematical physics. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [21] The dressing method and dynamics of soliton solutions for the Kundu–Eckhaus equation
    Xuedong Chai
    Yufeng Zhang
    Nonlinear Dynamics, 2023, 111 : 5655 - 5669
  • [22] Optical solitons and conservation law of Kundu-Eckhaus equation
    Mirzazadeh, Mohammad
    Yildirim, Yakup
    Yasar, Emrullah
    Triki, Houria
    Zhou, Qin
    Moshokoa, Seithuti P.
    Ullah, Malik Zaka
    Seadawy, Aly R.
    Biswas, Anjan
    Belic, Milivoj
    OPTIK, 2018, 154 : 551 - 557
  • [23] INTERACTIONS AND OSCILLATIONS OF THREE-SOLITON SOLUTION IN THE VARIABLE-COEFFICIENT KUNDU-ECKHAUS EQUATION FOR DISPERSION MANAGEMENT SYSTEMS
    Yu, Wei-Tian
    Wazwaz, Abdul-Majid
    Zhou, Qin
    Liu, Wen-Jun
    ROMANIAN JOURNAL OF PHYSICS, 2019, 64 (3-4):
  • [24] Soliton solutions of Kundu-Eckhaus equation in birefringent optical fiber with inter-modal dispersion
    Parasuraman, E.
    OPTIK, 2020, 223
  • [25] VECTOR FORM OF KUNDU-ECKHAUS EQUATION AND ITS SIMPLEST SOLUTIONS
    Smirnov, A. O.
    Caplieva, A. A.
    UFA MATHEMATICAL JOURNAL, 2023, 15 (03): : 148 - 163
  • [26] Inverse scattering method for the Kundu-Eckhaus equation with zero/nonzero boundary conditions
    Wang, Guixian
    Wang, Xiu-Bin
    Han, Bo
    Xue, Qi
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2021, 76 (04): : 315 - 327
  • [27] Reductions for Kundu-Eckhaus equation via Lie symmetry analysis
    Toomanian, Megerdich
    Asadi, Naser
    MATHEMATICAL SCIENCES, 2013, 7 (01)
  • [28] New optical solitons of Kundu-Eckhaus equation via ? -symmetry
    Mendoza, J.
    Muriel, C.
    Ramirez, J.
    CHAOS SOLITONS & FRACTALS, 2020, 136
  • [29] Whitham modulation theory and Riemann problem for the Kundu-Eckhaus equation
    Tan, QingShan
    Zhang, Jian
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [30] Soliton Solutions and Other Solutions for Kundu-Eckhaus Equation with Quintic Nonlinearity and Raman Effect Using the Improved Modified Extended Tanh-Function Method
    Ahmed, Karim K.
    Badra, Niveen M.
    Ahmed, Hamdy M.
    Rabie, Wafaa B.
    MATHEMATICS, 2022, 10 (22)